State estimation-based parameter identification for a class of nonlinear fractional-order systems

被引:1
作者
Oliva-Gonzalez, Lorenz Josue [1 ]
Martinez-Guerra, Rafael [1 ]
机构
[1] CINVESTAV IPN, Dept Control Automat, Ave IPN 2508, Mexico City 07360, Mexico
关键词
Robust parameter identification method; Nonlinear fractional-order systems; Mittag-Leffler Boundedness; On-line parametric identification; Measurement noise; SYNCHRONIZATION;
D O I
10.1007/s11071-024-09339-8
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
Parametric identification is an important part of system theory since knowledge of the parameters allows the analysis and control of the system. The aim of this paper is to propose a novel robust (against measurement noise) parameter identification method for a class of nonlinear fractional-order systems. In order to solve the parametric identification we carry out this problem to a state estimation problem, we introduce a Fractional Algebraic Identifiability (FAI) property which allows to represent the system parameters as a function of the inputs and outputs of the system, this parameter identification method provides an on-line identification process (while the system is operating), we also propose a fractional-order differentiator which allows to reduce the effect of measurement noise as well as to provide the estimation of a fractional-order derivative of the system output. Moreover, we use the Mittag-Leffler boundedness to demonstrate the convergence of this method, a different approach for this stability analysis method is given in this paper. Finally, we illustrate the accuracy and robustness of our proposed method by means of the parametric identification of two nonlinear fractional-order systems: a time-varying nonlinear fractional-order system and a nonlinear fractional-order mathematical model of a simple pendulum.
引用
收藏
页码:6379 / 6402
页数:24
相关论文
共 30 条
  • [1] Intelligent parameter identification and prediction of variable time fractional derivative and application in a symmetric chaotic financial system
    Bo, Wang
    Jinping, Liu
    Alassafid, Madini O.
    FawazE., Alsaadi
    Hadi, Jahanshahi
    Bekiros, Stelios
    [J]. CHAOS SOLITONS & FRACTALS, 2022, 154
  • [2] Recursive system identification for coefficient estimation of continuous-time fractional order systems
    Duhe, Jean-Francois
    Victor, Stephane
    Melchior, Pierre
    Abdelmounen, Youssef
    Roubertie, Francois
    [J]. IFAC PAPERSONLINE, 2021, 54 (07): : 114 - 119
  • [3] Gorenflo R., 2020, Related Topics and Applications, V2nd ed.
  • [4] Hamdi SE, 2017, I C SCI TECH AUTO CO, P261, DOI 10.1109/STA.2017.8314869
  • [5] Mittag-Leffler Functions and Their Applications
    Haubold, H. J.
    Mathai, A. M.
    Saxena, R. K.
    [J]. JOURNAL OF APPLIED MATHEMATICS, 2011,
  • [6] Lithium-ion battery modeling and parameter identification based on fractional theory
    Hu, Minghui
    Li, Yunxiao
    Li, Shuxian
    Fu, Chunyun
    Qin, Datong
    Li, Zonghua
    [J]. ENERGY, 2018, 165 : 153 - 163
  • [7] ANALOG SIMULATION OF NON-INTEGER ORDER TRANSFER FUNCTIONS FOR ANALYSIS OF ELECTRODE PROCESSES
    ICHISE, M
    NAGAYANAGI, Y
    KOJIMA, T
    [J]. JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 1971, 33 (02) : 253 - +
  • [8] A new fractional HRSV model and its optimal control: A non-singular operator approach
    Jajarmi, Amin
    Yusuf, Abdullahi
    Baleanu, Dumitru
    Inc, Mustafa
    [J]. PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2020, 547 (547)
  • [9] Lagrange α-exponential stability and α-exponential convergence for fractional-order complex-valued neural networks
    Jian, Jigui
    Wan, Peng
    [J]. NEURAL NETWORKS, 2017, 91 : 1 - 10
  • [10] A fractional PI observer for incommensurate fractional order systems under parametric uncertainties
    Josue Oliva-Gonzalez, Lorenz
    Martinez-Guerra, Rafael
    Pablo Flores-Flores, Juan
    [J]. ISA TRANSACTIONS, 2023, 137 (275-287) : 275 - 287