A Two-Stage Deep Learning Approach for Solving Microgrid Economic Dispatch

被引:6
作者
Fang, Xubin [1 ]
Khazaei, Javad [1 ]
机构
[1] Lehigh Univ, Elect & Comp Engn ECE Dept, Bethlehem, PA 18015 USA
来源
IEEE SYSTEMS JOURNAL | 2023年 / 17卷 / 04期
关键词
Deep neural networks (DNN); economic dispatch (ED); microgrid; numerical optimization; OPTIMIZATION; FRAMEWORK; ENERGY;
D O I
10.1109/JSYST.2023.3315833
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The intermittency of renewable generation and uncertainties of electricity demand motivates the real-time economic dispatch (ED) of assets in microgrids. However, numerical optimization problems are extremely hard to solve in real time. This article proposes a data-driven neural network (NN) approach for solving the ED problem of microgrids. To deal with intermittency of renewable generation, a two-stage training approach is proposed to better learn the spatio-temporal characteristics of renewable generation and conventional generation. In addition, to improve the learning process and increase the accuracy of the proposed NN framework, a short-time Fourier transform is utilized as a preprocessor and denoiser. Detailed comparison with conventional numerical optimization approaches validate the effectiveness of the proposed data-driven approach for optimally allocating microgrid resources in real time.
引用
收藏
页码:6237 / 6247
页数:11
相关论文
共 30 条
[1]   An algorithmic framework for convex mixed integer nonlinear programs [J].
Bonami, Pierre ;
Biegler, Lorenz T. ;
Conna, Andrew R. ;
Cornuejols, Gerard ;
Grossmann, Ignacio E. ;
Laird, Carl D. ;
Lee, Jon ;
Lodi, Andrea ;
Margot, Francois ;
Sawaya, Nicolas ;
Wachter, Andreas .
DISCRETE OPTIMIZATION, 2008, 5 (02) :186-204
[2]   Distributed Reinforcement Learning Algorithm for Dynamic Economic Dispatch With Unknown Generation Cost Functions [J].
Dai, Pengcheng ;
Yu, Wenwu ;
Wen, Guanghui ;
Baldi, Simone .
IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2020, 16 (04) :2258-2267
[3]   Machine-Learning-Based Real-Time Economic Dispatch in Islanding Microgrids in a Cloud-Edge Computing Environment [J].
Dong, Wei ;
Yang, Qiang ;
Li, Wei ;
Zomaya, Albert Y. .
IEEE INTERNET OF THINGS JOURNAL, 2021, 8 (17) :13703-13711
[4]   An Alternative Learning-Based Approach for Economic Dispatch in Smart Grid [J].
Guo, Fanghong ;
Xu, Bowen ;
Xing, Lantao ;
Zhang, Wen-An ;
Wen, Changyun ;
Yu, Li .
IEEE INTERNET OF THINGS JOURNAL, 2021, 8 (19) :15024-15036
[5]   An economic dispatch model incorporating wind power [J].
Hetzer, John ;
Yu, David C. ;
Bhattarai, Kalu .
IEEE TRANSACTIONS ON ENERGY CONVERSION, 2008, 23 (02) :603-611
[6]  
Hijjo M, 2017, 2017 IEEE PES POWERAFRICA CONFERENCE, P280
[7]   Multi-objective economic dispatch of a microgrid considering electric vehicle and transferable load [J].
Hou, Hui ;
Xue, Mengya ;
Xu, Yan ;
Xiao, Zhenfeng ;
Deng, Xiangtian ;
Xu, Tao ;
Liu, Peng ;
Cui, Rongjian .
APPLIED ENERGY, 2020, 262
[8]   Distributed Optimal Economic Dispatch for Microgrids Considering Communication Delays [J].
Huang, Bonan ;
Liu, Lining ;
Zhang, Huaguang ;
Li, Yushuai ;
Sun, Qiuye .
IEEE TRANSACTIONS ON SYSTEMS MAN CYBERNETICS-SYSTEMS, 2019, 49 (08) :1634-1642
[9]   Reinforcement Learning approaches to Economic Dispatch problem [J].
Jasmin, E. A. ;
Ahamed, T. P. Imthias ;
Raj, V. P. Jagathy .
INTERNATIONAL JOURNAL OF ELECTRICAL POWER & ENERGY SYSTEMS, 2011, 33 (04) :836-845
[10]   Dynamic economic dispatch of a hybrid energy microgrid considering building based virtual energy storage system [J].
Jin, Xiaolong ;
Mu, Yunfei ;
Jia, Hongjie ;
Wu, Jianzhong ;
Jiang, Tao ;
Yu, Xiaodan .
APPLIED ENERGY, 2017, 194 :386-398