The edge partition dimension of graphs

被引:0
作者
Kuziak, Dorota [1 ]
Maritz, Elizabeth [2 ]
Vetrik, Tomas [2 ]
Yero, Ismael G. [3 ]
机构
[1] Univ Cadiz, Dept Estat & Invest Operat, Algeciras, Spain
[2] Univ Free State, Dept Math & Appl Math, Bloemfontein, South Africa
[3] Univ Cadiz, Dept Matemat, Algeciras, Spain
基金
新加坡国家研究基金会;
关键词
edge resolving partition; edge partition dimension; edge metric dimension; partition dimension;
D O I
10.47443/dml.2023.010
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The edge metric dimension was introduced in 2018 and since then, it has been extensively studied. In this paper, we present a different way to obtain resolving structures in graphs in order to gain more insight into the study of edge resolving sets and resolving partitions. We define the edge partition dimension of a connected graph and bound it for graphs of given order and for graphs with given maximum degree. We obtain exact values of the edge partition dimension for multipartite graphs. Some relations between the edge partition dimension and partition dimension/edge metric dimension are also presented. Moreover, several open problems for further research are stated.
引用
收藏
页码:34 / 39
页数:6
相关论文
共 10 条
  • [1] Tillquist RC, 2021, Arxiv, DOI arXiv:2104.07201
  • [2] Chartrand G., 2000, AEQUATIONES MATH, V59, P45, DOI [DOI 10.1007/PL00000127, 10.1007/PL00000127]
  • [3] Chartrand G, 2009, AUSTRALAS J COMB, V44, P273
  • [4] Yero IG, 2014, ELECTRON J COMB, V21
  • [5] Harary F., 1976, Ars. Combin., V2, P1
  • [6] Uniquely identifying the edges of a graph: The edge metric dimension
    Kelenc, Aleksander
    Tratnik, Niko
    Yero, Ismael G.
    [J]. DISCRETE APPLIED MATHEMATICS, 2018, 251 : 204 - 220
  • [7] Kuziak D, 2021, Arxiv, DOI arXiv:2107.04877
  • [8] Pirzada S, 2020, DISCRETE MATH LETT, V3, P37
  • [9] On metric generators of graphs
    Sebó, A
    Tannier, E
    [J]. MATHEMATICS OF OPERATIONS RESEARCH, 2004, 29 (02) : 383 - 393
  • [10] Slater P. J., 1975, Congr. Numer., V14, P37, DOI DOI 10.1002/NET.3230170105