Multi-stream Global-Local Motion Fusion Network for skeleton-based action recognition

被引:0
|
作者
Qi, Yanpeng [1 ]
Pang, Chen [1 ]
Liu, Yiliang [1 ,3 ]
Lyu, Lei [1 ,2 ]
机构
[1] Shandong Normal Univ, Sch Informat Sci & Engn, Jinan, Peoples R China
[2] Shandong Prov Key Lab Distributed Comp Software No, Jinan, Peoples R China
[3] Shandong Prov Acad Educ Recruitment & Examinat, Jinan, Peoples R China
关键词
Action recognition; Grouping graph convolution; Spatial-temporal self-attention; Multi-stream fusion strategy; LSTM;
D O I
10.1016/j.asoc.2023.110536
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Skeleton-based action recognition is widely used in varied areas such as human-machine interaction and virtual reality. Benefit from the powerful expression ability to depict structural data, graph convolutional networks (GCNs) have been developed to address this task by modeling the human body skeletons as spatial-temporal graphs. However, most existing GCN-based methods usually ignore the diversity of the motion information between channels of the input feature. And how to enhance the ability to capture the long-term global correlations in spatial and temporal dimensions is also a fundamental challenge. In this work, we propose a novel multi-stream framework Global-Local Motion Fusion Network (GLMFN), which integrates the global and local motion information of spatial-temporal dimensions. Specifically, we design a grouping graph convolution module to enforce the ability to aggregate local spatial motion information. Besides, to learn richer semantic features, we propose two modules based on the self-attention operator: a spatial self-attention module and a temporal self-attention module. The former is responsible for extracting spatial long-term motion relationships, while the latter aims to capture temporal long-term motion relationships. Moreover, we present a multi-stream fusion strategy with a series of treatments for body joints to achieve a better recognition effect. To validate the efficacy and efficiency of the proposed model, we perform exhaustive experiments on the NTU-RGBD dataset and NTU-RGBD-120 dataset, and our method achieves the state-of-the-art performance on both datasets. (c) 2023 Published by Elsevier B.V.
引用
收藏
页数:13
相关论文
共 50 条
  • [41] EARLY FUSION GRAPH CONVOLUTIONAL NETWORK FOR SKELETON-BASED ACTION RECOGNITION
    Zhao, Xiaoxue
    Liu, Cuiwei
    Shi, Xiangbin
    2021 IEEE 31ST INTERNATIONAL WORKSHOP ON MACHINE LEARNING FOR SIGNAL PROCESSING (MLSP), 2021,
  • [42] A Multi-Stream Graph Convolutional Networks-Hidden Conditional Random Field Model for Skeleton-Based Action Recognition
    Liu, Kai
    Gao, Lei
    Khan, Naimul Mefraz
    Qi, Lin
    Guan, Ling
    IEEE TRANSACTIONS ON MULTIMEDIA, 2021, 23 : 64 - 76
  • [43] Multi-stream part-fused graph convolutional networks for skeleton-based gait recognition
    Wang, Likai
    Chen, Jinyan
    Chen, Zhenghang
    Liu, Yuxin
    Yang, Haolin
    CONNECTION SCIENCE, 2022, 34 (01) : 652 - 669
  • [44] RELATIONAL NETWORK FOR SKELETON-BASED ACTION RECOGNITION
    Zheng, Wu
    Li, Lin
    Zhang, Zhaoxiang
    Huang, Yan
    Wang, Liang
    2019 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA AND EXPO (ICME), 2019, : 826 - 831
  • [45] Motion saliency based multi-stream multiplier ResNets for action recognition
    Zong, Ming
    Wang, Ruili
    Chen, Xiubo
    Chen, Zhe
    Gong, Yuanhao
    IMAGE AND VISION COMPUTING, 2021, 107 (107)
  • [46] Multi-stream fusion network for continuous gesture recognition based on sEMG
    Li J.
    Zou C.
    Tang D.
    Sun Y.
    Fan H.
    Li B.
    Tang X.
    International Journal of Wireless and Mobile Computing, 2024, 26 (04): : 374 - 383
  • [47] Local and Global Spatial-Temporal Transformer for skeleton-based action recognition
    Liu, Ruyi
    Chen, Yu
    Gai, Feiyu
    Liu, Yi
    Miao, Qiguang
    Wu, Shuai
    NEUROCOMPUTING, 2025, 634
  • [48] Multi-Modality Adaptive Feature Fusion Graph Convolutional Network for Skeleton-Based Action Recognition
    Zhang, Haiping
    Zhang, Xinhao
    Yu, Dongjin
    Guan, Liming
    Wang, Dongjing
    Zhou, Fuxing
    Zhang, Wanjun
    SENSORS, 2023, 23 (12)
  • [49] Glimpse and focus: Global and local-scale graph convolution network for skeleton-based action recognition
    Gao, Xuehao
    Du, Shaoyi
    Yang, Yang
    NEURAL NETWORKS, 2023, 167 : 551 - 558
  • [50] Local and global self-attention enhanced graph convolutional network for skeleton-based action recognition
    Wu, Zhize
    Ding, Yue
    Wan, Long
    Li, Teng
    Nian, Fudong
    PATTERN RECOGNITION, 2025, 159