Stabilizing Bottom Side of Perovskite via Preburying Cesium Formate toward Efficient and Stable Solar Cells

被引:30
作者
Deng, Liangliang [1 ]
Wang, Haoliang [1 ]
Rafique, Saqib [1 ]
Wang, Yanyan [1 ]
Hu, Tianxiang [1 ]
Liu, Kai [1 ]
Wang, Yaxin [1 ]
Li, Xiaoguo [1 ]
Xie, Zuoti [2 ]
Tang, Jun [3 ]
Liu, Zhe [4 ]
Li, Jinpeng [3 ]
Yuan, Wei [5 ]
Wang, Jiao [1 ]
Yu, Anran [1 ]
Zhan, Yiqiang [1 ]
机构
[1] Fudan Univ, Ctr Micronano Syst, Sch Informat Sci & Technol, Shanghai 200438, Peoples R China
[2] Guangdong Technion Israel Inst Technol, Dept Mat Sci & Engn, MATEC, 241 Daxue Rd, Shantou 515063, Guangdong, Peoples R China
[3] Beijing Jiaotong Univ, Sch Phys Sci & Engn, Key Lab Luminescence & Opt Informat, Minist Educ, Beijing 100044, Peoples R China
[4] Beijing Inst Technol, Sch Opt & Photon, Beijing 100081, Peoples R China
[5] Fudan Univ, Inst Optoelect, 2005 Songhu Rd, Shanghai 200438, Peoples R China
基金
中国国家自然科学基金;
关键词
bottom side; cesium formate; operational stability; perovskite solar cells; strains; STRAIN RELAXATION; PERFORMANCE; INTERFACES;
D O I
10.1002/adfm.202303742
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The fragile bottom side of perovskite films is demonstrated to be harmful to the efficiency and stability of perovskite solar cells (PSCs) because the carrier extraction and recombination can be significantly influenced by the easily formed strain, voids, and defects on the bottom side. Nevertheless, the bottom side of perovskite films is usually overlooked because it remains a challenge to directly characterize and modify the bottom side. Herein, a facile and effective strategy is reported to stabilize the bottom side via preburying cesium formate (CsFo) into the SnO2 electron transport layer (ETL). It is found that the synergistic effect of cesium cation (Cs+) and formate anion (HCOO-) causes strain relaxation, void elimination, and defects' reduction, which further facilitate the charge extraction. Consequently, the champion power conversion efficiency (PCE) of formamidinium (FA)-based PSCs is increased from 23.34% to 24.50%. Meanwhile, the ultraviolet (UV), thermal, and operational stability are also enhanced. Finally, formamidinium-cesium (FACs)-based PSCs are investigated to confirm the effectiveness of this preburied CsFo strategy, and the optimal device exhibits a champion PCE of 25.03% and a remarkably high fill factor (FF) of 85.65%.
引用
收藏
页数:10
相关论文
共 50 条
[41]   Interface Engineering for Highly Efficient and Stable Perovskite Solar Cells [J].
Zhao, Chenxu ;
Zhang, Hong ;
Krishna, Anurag ;
Xu, Jia ;
Yao, Jianxi .
ADVANCED OPTICAL MATERIALS, 2024, 12 (07)
[42]   Highly efficient and stable perovskite solar cells via bilateral passivation layers [J].
Wang, Tun ;
Cheng, Zhendong ;
Zhou, Yulin ;
Liu, Hong ;
Shen, Wenzhong .
JOURNAL OF MATERIALS CHEMISTRY A, 2019, 7 (38) :21730-21739
[43]   Stabilizing 2D perovskite passivation layer with mixed spacer cations for efficient and stable perovskite solar cells [J].
Chen, Ruiqian ;
Gu, Lei ;
Su, Jiacheng ;
Feng, Yang ;
Deng, Haoran ;
Zhang, Jie ;
Bao, Yaqi ;
Wang, Dourong ;
Song, Xinyue ;
Zhao, Lei ;
Song, Lin .
NANO ENERGY, 2025, 139
[44]   Toward Efficient and Stable Perovskite Solar Cells: Choosing Appropriate Passivator to Specific Defects [J].
Zhou, Xin ;
Qi, Wenjing ;
Li, Jiale ;
Cheng, Jian ;
Li, Yameng ;
Luo, Jingshan ;
Ko, Min Jae ;
Li, Yuelong ;
Zhao, Ying ;
Zhang, Xiaodan .
SOLAR RRL, 2020, 4 (10)
[45]   PbS QDs as Electron Blocking Layer Toward Efficient and Stable Perovskite Solar Cells [J].
Zhao, Gen ;
Cai, Qingbin ;
Liu, Xiaotao ;
Li, Pengwei ;
Zhang, Yiqiang ;
Shao, Guosheng ;
Liang, Chao .
IEEE JOURNAL OF PHOTOVOLTAICS, 2019, 9 (01) :194-199
[46]   Underlayer engineering of grain strain toward efficient and stable tin perovskite solar cells [J].
Li, Bo ;
Li, Zhen ;
Gao, Danpeng ;
Wu, Xin ;
Li, Xintong ;
Zhang, Chunlei ;
Li, Shuai ;
Gong, Jianqiu ;
Zhang, Dong ;
Xie, Xiangfan ;
Xiao, Shuang ;
Lu, Haipeng ;
Li, Mingjie ;
Zhu, Zonglong .
MATERIALS CHEMISTRY FRONTIERS, 2023, 7 (16) :3406-3413
[47]   Target therapy at buried interfaces toward efficient and stable inorganic perovskite solar cells [J].
Bian, Liqiang ;
Jia, Yun ;
Zhao, Yuanyuan ;
Dou, Zhi ;
Guo, Qiyao ;
Duan, Jialong ;
Dou, Jie ;
Sun, Liqing ;
Zhang, Qiang ;
Tang, Qunwei .
CHEMICAL ENGINEERING JOURNAL, 2024, 496
[48]   Covalent Organic Framework as a Precursor Additive Toward Efficient and Stable Perovskite Solar Cells [J].
Gao, Xiang ;
Li, Zhenyuan ;
Guo, Junjun ;
Meng, Genping ;
Wang, Bei ;
Lang, Guohao ;
Tang, Zhijie ;
Feng, Jiawei ;
Chen, Mengxiu ;
Ling, Xufeng ;
Wang, Baodui ;
Yuan, Jianyu .
ADVANCED ENERGY AND SUSTAINABILITY RESEARCH, 2024, 5 (01)
[49]   Recent advances toward efficient and stable tin-based perovskite solar cells [J].
Tai, Qidong ;
Cao, Jiupeng ;
Wang, Tianyue ;
Yan, Feng .
ECOMAT, 2019, 1 (01)
[50]   Synergistic defect passivation and strain compensation toward efficient and stable perovskite solar cells [J].
Bian, Liqiang ;
Xin, Zhe ;
Zhao, Yuanyuan ;
Gao, Lei ;
Dou, Zhi ;
Li, Linde ;
Guo, Qiyao ;
Duan, Jialong ;
Dou, Jie ;
Wang, Yingli ;
Zhang, Xinyu ;
Jiang, Chi ;
Sun, Liqing ;
Zhang, Qiang ;
Tang, Qunwei .
JOURNAL OF ENERGY CHEMISTRY, 2024, 98 :327-333