Location-Dependent Spatiotemporal Antialiasing in Photoacoustic Computed Tomography

被引:9
作者
Hu, Peng [1 ,2 ]
Li, Lei [1 ,2 ]
Wang, Lihong V. V. [1 ,2 ]
机构
[1] CALTECH, Andrew & Peggy Cherng Dept Med Engn, Caltech Opt Imaging Lab, Pasadena, CA 91125 USA
[2] CALTECH, Dept Elect Engn, Pasadena, CA 91125 USA
基金
美国国家卫生研究院;
关键词
Image reconstruction; Spatiotemporal phenomena; Transducers; Optical filters; Cutoff frequency; Acoustics; Optical imaging; Photoacoustic computed tomography; spatial Nyquist criterion; location-dependent spatiotemporal antialiasing; OPTOACOUSTIC TOMOGRAPHY; DOMAIN RECONSTRUCTION; IMAGE-RECONSTRUCTION;
D O I
10.1109/TMI.2022.3225565
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Photoacoustic computed tomography (PACT) images optical absorption contrast by detecting ultrasonic waves induced by optical energy deposition in materials such as biological tissues. An ultrasonic transducer array or its scanning equivalent is used to detect ultrasonic waves. The spatial distribution of the transducer elements must satisfy the spatial Nyquist criterion; otherwise, spatial aliasing occurs and causes artifacts in reconstructed images. The spatial Nyquist criterion poses different requirements on the transducer elements' distributions for different locations in the image domain, which has not been studied previously. In this research, we elaborate on the location dependency through spatiotemporal analysis and propose a location-dependent spatiotemporal antialiasing method. By applying this method to PACT in full-ring array geometry, we effectively mitigate aliasing artifacts with minimal effects on image resolution in both numerical simulations and in vivo experiments.
引用
收藏
页码:1210 / 1224
页数:15
相关论文
共 27 条
[1]  
Arridge S., 2016, Accelerated high-resolution photoacoustic tomography via compressed sensing
[2]   Fast Gradient-Based Algorithms for Constrained Total Variation Image Denoising and Deblurring Problems [J].
Beck, Amir ;
Teboulle, Marc .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2009, 18 (11) :2419-2434
[3]   Streak artifact suppression in photoacoustic computed tomography using adaptive back projection [J].
Cai, Chuangjian ;
Wang, Xuanhao ;
Si, Ke ;
Qian, Jun ;
Luo, Jianwen ;
Ma, Cheng .
BIOMEDICAL OPTICS EXPRESS, 2019, 10 (09) :4803-4814
[4]  
Chambolle A, 2004, J MATH IMAGING VIS, V20, P89
[5]   Deep learning of image- and time-domain data enhances the visibility of structures in optoacoustic tomography [J].
Davoudi, Neda ;
Lafci, Berkan ;
Oezbek, Ali ;
Dean-Ben, Xose Luis ;
Razansky, Daniel .
OPTICS LETTERS, 2021, 46 (13) :3029-3032
[6]   Deep learning optoacoustic tomography with sparse data [J].
Davoudi, Neda ;
Dean-Ben, Xose Luis ;
Razansky, Daniel .
NATURE MACHINE INTELLIGENCE, 2019, 1 (10) :453-460
[7]   Spatiotemporal Antialiasing in Photoacoustic Computed Tomography [J].
Hu, Peng ;
Li, Lei ;
Lin, Li ;
Wang, Lihong V. .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2020, 39 (11) :3535-3547
[8]   Full-Wave Iterative Image Reconstruction in Photoacoustic Tomography With Acoustically Inhomogeneous Media [J].
Huang, Chao ;
Wang, Kun ;
Nie, Liming ;
Wang, Lihong V. ;
Anastasio, Mark A. .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2013, 32 (06) :1097-1110
[9]   Deep learning for undersampled MRI reconstruction [J].
Hyun, Chang Min ;
Kim, Hwa Pyung ;
Lee, Sung Min ;
Lee, Sungchul ;
Seo, Jin Keun .
PHYSICS IN MEDICINE AND BIOLOGY, 2018, 63 (13)
[10]  
Kelkar VA, 2021, PR MACH LEARN RES, V139