Localized growth of atomic-layer-deposited platinum catalysts on plasma-treated surface of carbon nanotubes

被引:7
作者
Koo, Junmo [1 ]
Jeong, Heon Jun [1 ]
Choi, Wonjoon [1 ]
Shim, Joon Hyung [1 ]
机构
[1] Korea Univ, Sch Mech Engn, 145 Anam ro, Seoul 02841, South Korea
基金
新加坡国家研究基金会;
关键词
Atomic layer deposition; Polymer electrolyte membrane fuel cell; Plasma pretreatment; Platinum; Catalyst; FUEL-CELL ELECTROCATALYSTS; OXYGEN REDUCTION; NANOPARTICLES; PERFORMANCE; ELECTRODES; NUCLEATION; BEHAVIOR; SUPPORT;
D O I
10.1016/j.scriptamat.2022.115185
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Platinum-carbon nanotube (CNT) catalysts were evaluated for use as the cathode catalyst in polymer electrolyte membrane fuel cells. Pt catalysts were fabricated by atomic layer deposition (ALD) on bare untreated or O2 plasma treated CNTs. Pt formed as particles that uniformly covered both the bare and plasma-treated CNT supports. The Pt particles on the bare CNTs were relatively small, and the particle size increased with increasing number of ALD cycles. By contrast, Pt formed as sparsely deposited large particles on the plasma-treated CNTs. This morphological difference caused a clear difference in the electrochemical and fuel cell performance. Ex-periments confirmed that relatively high and stable power production can be obtained using the relatively large Pt catalysts grown on the plasma-treated CNTs. Factors other than electrochemical enhancement by the geo-metric features were also found to affect the fuel cell performance.
引用
收藏
页数:7
相关论文
共 50 条
[1]   Atomic layer deposition of platinum thin films [J].
Aaltonen, T ;
Ritala, M ;
Sajavaara, T ;
Keinonen, J ;
Leskelä, M .
CHEMISTRY OF MATERIALS, 2003, 15 (09) :1924-1928
[2]   Current Status and Future Development of Catalyst Materials and Catalyst Layers for Proton Exchange Membrane Fuel Cells: An Industrial Perspective [J].
Banham, Dustin ;
Ye, Siyu .
ACS ENERGY LETTERS, 2017, 2 (03) :629-638
[3]   CRYSTALLITE GROWTH OF PLATINUM DISPERSED ON GRAPHITIZED CARBON-BLACK .2. EFFECT OF LIQUID ENVIRONMENT [J].
BETT, JAS ;
KINOSHITA, K ;
STONEHART, P .
JOURNAL OF CATALYSIS, 1976, 41 (01) :124-133
[4]   Water management in novel direct membrane deposition fuel cells under low humidification [J].
Breitwieser, M. ;
Moroni, R. ;
Schock, J. ;
Schulz, M. ;
Schillinger, B. ;
Pfeiffer, F. ;
Zengerle, R. ;
Thiele, S. .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2016, 41 (26) :11412-11417
[5]   Improved Pt-utilization efficiency of low Pt-loading PEM fuel cell electrodes using direct membrane deposition [J].
Breitwieser, Matthias ;
Klingele, Matthias ;
Britton, Benjamin ;
Holdcroft, Steven ;
Zengerle, Roland ;
Thiele, Simon .
ELECTROCHEMISTRY COMMUNICATIONS, 2015, 60 :168-171
[6]   Electrocatalysts by atomic layer deposition for fuel cell applications [J].
Cheng, Niancai ;
Shao, Yuyan ;
Liu, Jun ;
Sun, Xueliang .
NANO ENERGY, 2016, 29 :220-242
[7]   Aligned carbon nanotube array functionalization for enhanced atomic layer deposition of platinum electrocatalysts [J].
Dameron, Arrelaine A. ;
Pylypenko, Svitlana ;
Bult, Justin B. ;
Neyerlin, K. C. ;
Engtrakul, Chaiwat ;
Bochert, Christopher ;
Leong, G. Jeremy ;
Frisco, Sarah L. ;
Simpson, Lin ;
Dinh, Huyen N. ;
Pivovar, Bryan .
APPLIED SURFACE SCIENCE, 2012, 258 (13) :5212-5221
[8]   Atomic Layer Deposition of Platinum Catalysts on Nanowire Surfaces for Photoelectrochemical Water Reduction [J].
Dasgupta, Neil P. ;
Liu, Chong ;
Andrews, Sean ;
Prinz, Fritz B. ;
Yang, Peidong .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2013, 135 (35) :12932-12935
[9]   Electrocatalyst approaches and challenges for automotive fuel cells [J].
Debe, Mark K. .
NATURE, 2012, 486 (7401) :43-51
[10]   Surface mobility and impact of precursor dosing during atomic layer deposition of platinum: in situ monitoring of nucleation and island growth [J].
Dendooven, Jolien ;
Van Daele, Michiel ;
Solano, Eduardo ;
Ramachandran, Ranjith K. ;
Minjauw, Matthias M. ;
Resta, Andrea ;
Vlad, Alina ;
Garreau, Yves ;
Coati, Alessandro ;
Portale, Giuseppe ;
Detavernier, Christophe .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2020, 22 (43) :24917-24933