A Knockout of Poly(ADP-Ribose) Polymerase 1 in a Human Cell Line: An Influence on Base Excision Repair Reactions in Cellular Extracts

被引:1
|
作者
Khodyreva, Svetlana N. [1 ]
Ilina, Ekaterina S. [1 ,2 ]
Dyrkheeva, Nadezhda S. [1 ,2 ]
Kochetkova, Alina S. [1 ]
Yamskikh, Alexandra A. [1 ,2 ]
Maltseva, Ekaterina A. [1 ]
Malakhova, Anastasia A. [1 ,3 ]
Medvedev, Sergey P. [1 ,3 ]
Zakian, Suren M. [1 ,3 ]
Lavrik, Olga I. [1 ,2 ]
机构
[1] Russian Acad Sci, Inst Chem Biol & Fundamental Med, Siberian Branch, 8 Akad Lavrentyeva Ave, Novosibirsk 630090, Russia
[2] Novosibirsk State Univ, Fac Nat Sci, 2 Pirogova Str, Novosibirsk 630090, Russia
[3] Russian Acad Sci, Fed Res Ctr, Siberian Branch, Inst Cytol & Genet, 10 Akad Lavrentyeva Ave, Novosibirsk 630090, Russia
基金
俄罗斯科学基金会;
关键词
base excision repair enzymatic activity; CRISPR/Cas9; mRNA; poly(ADP-ribose) polymerase 1; poly(ADP-ribosyl)ation; DNA-REPAIR; ADP-RIBOSYLATION; PROTEINS; PARP1; BETA; ENDONUCLEASE; PATHWAY; ENZYMES; BINDING; MOUSE;
D O I
10.3390/cells13040302
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Base excision repair (BER) is the predominant pathway for the removal of most forms of hydrolytic, oxidative, and alkylative DNA lesions. The precise functioning of BER is achieved via the regulation of each step by regulatory/accessory proteins, with the most important of them being poly(ADP-ribose) polymerase 1 (PARP1). PARP1 ' s regulatory functions extend to many cellular processes including the regulation of mRNA stability and decay. PARP1 can therefore affect BER both at the level of BER proteins and at the level of their mRNAs. Systematic data on how the PARP1 content affects the activities of key BER proteins and the levels of their mRNAs in human cells are extremely limited. In this study, a CRISPR/Cas9-based technique was used to knock out the PARP1 gene in the human HEK 293FT line. The obtained cell clones with the putative PARP1 deletion were characterized by several approaches including PCR analysis of deletions in genomic DNA, Sanger sequencing of genomic DNA, quantitative PCR analysis of PARP1 mRNA, Western blot analysis of whole-cell-extract (WCE) proteins with anti-PARP1 antibodies, and PAR synthesis in WCEs. A quantitative PCR analysis of mRNAs coding for BER-related proteins-PARP2, uracil DNA glycosylase 2, apurinic/apyrimidinic endonuclease 1, DNA polymerase beta, DNA ligase III, and XRCC1-did not reveal a notable influence of the PARP1 knockout. The corresponding WCE catalytic activities evaluated in parallel did not differ significantly between the mutant and parental cell lines. No noticeable effect of poly(ADP-ribose) synthesis on the activity of the above WCE enzymes was revealed either.
引用
收藏
页数:16
相关论文
共 50 条
  • [21] Regulation of Myofibroblast Differentiation by Poly(ADP-Ribose) Polymerase 1
    Hu, Biao
    Wu, Zhe
    Hergert, Polla
    Henke, Craig A.
    Bitterman, Peter B.
    Phan, Sem H.
    AMERICAN JOURNAL OF PATHOLOGY, 2013, 182 (01) : 71 - 83
  • [22] Natural Inhibitors of Poly(ADP-ribose) Polymerase-1
    Banasik, Marek
    Stedeford, Todd
    Strosznajder, Robert P.
    MOLECULAR NEUROBIOLOGY, 2012, 46 (01) : 55 - 63
  • [23] Herpes Simplex Virus 1 Infection Activates Poly(ADP-Ribose) Polymerase and Triggers the Degradation of Poly(ADP-Ribose) Glycohydrolase
    Grady, Sarah L.
    Hwang, Jesse
    Vastag, Livia
    Rabinowitz, Joshua D.
    Shenk, Thomas
    JOURNAL OF VIROLOGY, 2012, 86 (15) : 8259 - 8268
  • [24] Poly(ADP-Ribose)Polymerase Activity Controls Plant Growth by Promoting Leaf Cell Number
    Schulz, Philipp
    Jansseune, Karel
    Degenkolbe, Thomas
    Meret, Michael
    Claeys, Hannes
    Skirycz, Aleksandra
    Teige, Markus
    Willmitzer, Lothar
    Hannah, Matthew A.
    PLOS ONE, 2014, 9 (02):
  • [25] EXPRESSION OF HUMAN POLY(ADP-RIBOSE) POLYMERASE IN SACCHAROMYCES-CEREVISIAE
    COLLINGE, MA
    ALTHAUS, FR
    MOLECULAR AND GENERAL GENETICS, 1994, 245 (06): : 686 - 693
  • [26] Apurinic/apyrimidinic (AP) site recognition by the 5′-dRP/AP lyase in poly(ADP-ribose) polymerase-1 (PARP-1)
    Khodyreva, S. N.
    Prasad, R.
    Ilina, E. S.
    Sukhanova, M. V.
    Kutuzov, M. M.
    Liu, Y.
    Hou, E. W.
    Wilson, S. H.
    Lavrik, O. I.
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2010, 107 (51) : 22090 - 22095
  • [27] Fused in Sarcoma (FUS) in DNA Repair: Tango with Poly(ADP-ribose) Polymerase 1 and Compartmentalisation of Damaged DNA
    Sukhanova, Maria V.
    Singatulina, Anastasia S.
    Pastre, David
    Lavrik, Olga I.
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2020, 21 (19) : 1 - 18
  • [28] Modeling of the Enzyme-Substrate Complexes of Human Poly(ADP-Ribose) Polymerase 1
    Nilov, D. K.
    Pushkarev, S. V.
    Gushchina, I. V.
    Manasaryan, G. A.
    Kirsanov, K. I.
    Svedas, V. K.
    BIOCHEMISTRY-MOSCOW, 2020, 85 (01) : 99 - 107
  • [29] Differential and Concordant Roles for Poly(ADP-Ribose) Polymerase 1 and Poly(ADP-Ribose) in Regulating WRN and RECQL5 Activities
    Khadka, Prabhat
    Hsu, Joseph K.
    Veith, Sebastian
    Tadokoro, Takashi
    Shamanna, Raghavendra A.
    Mangerich, Aswin
    Croteau, Deborah L.
    Bohr, Vilhelm A.
    MOLECULAR AND CELLULAR BIOLOGY, 2015, 35 (23) : 3974 - 3989
  • [30] Misregulation of poly(ADP-ribose) polymerase-1 activity and cell type-specific loss of poly(ADP-ribose) synthesis in the cerebellum of aged rats
    Malanga, M
    Romano, M
    Ferone, A
    Petrella, A
    Monti, G
    Jones, R
    Limatola, E
    Farina, B
    JOURNAL OF NEUROCHEMISTRY, 2005, 93 (04) : 1000 - 1009