IMPLICIT TIME DISCRETIZATION;
VISCOSITY SOLUTIONS;
LEVEL SETS;
MOTION;
UNIQUENESS;
EXISTENCE;
D O I:
10.1007/s00205-023-01944-y
中图分类号:
O29 [应用数学];
学科分类号:
070104 ;
摘要:
We consider the flat flowsolution, obtained via a discreteminimizingmovement scheme, to the volume preserving mean curvature flow starting from C(1,)1-regular set. We prove the consistency principle, which states that (any) flat flow solution agrees with the classical solution as long as the latter exists. In particular the flat flow solution is unique and smooth up to the first singular time. We obtain the result by proving the full regularity for the discrete time approximation of the flat flow such that the regularity estimates are stable with respect to the time discretization. Our method can also be applied in the case of the mean curvature flow and thus it provides an alternative proof, not relying on comparison principle, for the consistency between the flat flow solution and the classical solution for C-1,C-1-regular initial sets.
机构:
Univ Roma Tor Vergata, Dipartimento Matemat, I-00133 Rome, Italy
Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Rome, ItalyUniv Roma Tor Vergata, Dipartimento Matemat, I-00133 Rome, Italy
Bellettini, Giovanni
Caselles, Vicent
论文数: 0引用数: 0
h-index: 0
机构:
Univ Pompeu Fabra, Dept Tecnol, Barcelona 08003, SpainUniv Roma Tor Vergata, Dipartimento Matemat, I-00133 Rome, Italy
Caselles, Vicent
Chambolle, Antonin
论文数: 0引用数: 0
h-index: 0
机构:
Ecole Polytech, CMAP, CNRS, F-91128 Palaiseau, FranceUniv Roma Tor Vergata, Dipartimento Matemat, I-00133 Rome, Italy
Chambolle, Antonin
Novaga, Matteo
论文数: 0引用数: 0
h-index: 0
机构:
Univ Pisa, Dipartimento Matemat, I-56127 Pisa, ItalyUniv Roma Tor Vergata, Dipartimento Matemat, I-00133 Rome, Italy
Novaga, Matteo
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES,
2009,
92
(05):
: 499
-
527