Dynamic convolution-based image dehazing network

被引:3
作者
Zhuohang, Shi [1 ]
机构
[1] Chengdu Univ Technol, Sch Comp & Network Secur, Oxford Brookes Inst, Chengdu 610059, Sichuan, Peoples R China
关键词
Image dehazing; Dynamic convolution; Normalization; Transformer;
D O I
10.1007/s11042-023-17408-0
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Convolutional neural networks use a convolutional kernel with static weights for processing non-uniform haze or dense fog, which may lead to redundancy of network parameters. To address the structural limitations of convolution, dynamic convolution has been proposed and received wide attention; however, its direct application to image dehazing tasks still suffers from parameter redundancy, simple structure, and lack of information exchange in different dimensions. To solve these problems, a novel dynamic convolution-based image dehazing network DyStd-Net is proposed, which uses a novel dynamic convolution TDyConv, which uses the Transformer mechanism to dynamically adjust the weights of the output channel dimension and spatial dimension of the convolution kernel according to the input, giving the convolution a larger perceptual field and better nonlinear representation. In addition, a standard deviation normalization scheme StdNorm for the dynamic convolution kernel weights is explored to accelerate the dynamic convolution training. DyStd-Net adopts a U-Net-like structure and combines dynamic convolution with depth-separable convolution, making full use of image features of different dimensions to recover fog-free images. A combination of smoothed L1 loss, SSIM loss, and Perceptual Loss is used in the training process for parameter optimization. Tests on synthetic and real fogging datasets show that DyStd-Net achieves higher PSNR and SSIM metrics and provides better subjective perception compared with mainstream dehazing algorithms.
引用
收藏
页码:49039 / 49056
页数:18
相关论文
共 30 条
[1]   Arithmetic optimization algorithm with deep learning enabled airborne particle-bound metals size prediction model [J].
Almalawi, Abdulmohsen ;
Khan, Asif Irshad ;
Alsolami, Fawaz ;
Alkhathlan, Ali ;
Fahad, Adil ;
Irshad, Kashif ;
Alfakeeh, Ahmed S. ;
Qaiyum, Sana .
CHEMOSPHERE, 2022, 303
[2]   NTIRE 2021 NonHomogeneous Dehazing Challenge Report [J].
Ancuti, Codruta O. ;
Ancuti, Cosmin ;
Vasluianu, Florin-Alexandru ;
Timofte, Radu ;
Fu, Minghan ;
Liu, Huan ;
Yu, Yankun ;
Chen, Jun ;
Wang, Keyan ;
Chang, Jerome ;
Wang, Xiyao ;
Liu, Jing ;
Xu, Yi ;
Zhang, Xinjian ;
Zhao, Minyi ;
Zhou, Shuigeng ;
Chen, Tianyi ;
Fu, Jiahui ;
Jiang, Wentao ;
Gao, Chen ;
Liu, Si ;
Wang, Yudong ;
Guo, Jichang ;
Li, Chongyi ;
Yan, Qixin ;
Zheng, Sida ;
Zamir, Syed Waqas ;
Arora, Aditya ;
Dudhane, Akshay ;
Khan, Salman ;
Hayat, Munawar ;
Khan, Fahad Shahbaz ;
Shao, Ling ;
Zhang, Haichuan ;
Guo, Tiantong ;
Monga, Vishal ;
Yang, Wenjin ;
Lin, Jin ;
Luo, Xiaotong ;
Huang, Guowen ;
Chen, Shuxin ;
Qu, Yanyun ;
Xu, Kele ;
Yang, Lehan ;
Sun, Pengliang ;
Niu, Xuetong ;
Zheng, Junjun ;
Ruan, Xiaotong ;
Wang, Yunfeng ;
Yang, Jiang .
2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS, CVPRW 2021, 2021, :627-646
[3]   NH-HAZE: An Image Dehazing Benchmark with Non-Homogeneous Hazy and Haze-Free Images [J].
Ancuti, Codruta O. ;
Ancuti, Cosmin ;
Timofte, Radu .
2020 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS (CVPRW 2020), 2020, :1798-1805
[4]  
Ancuti CO, 2019, IEEE IMAGE PROC, P1014, DOI [10.1109/ICIP.2019.8803046, 10.1109/icip.2019.8803046]
[5]  
[Anonymous], 2016, Layer normalization
[6]   DehazeNet: An End-to-End System for Single Image Haze Removal [J].
Cai, Bolun ;
Xu, Xiangmin ;
Jia, Kui ;
Qing, Chunmei ;
Tao, Dacheng .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2016, 25 (11) :5187-5198
[7]   Gated Context Aggregation Network for Image Dehazing and Deraining [J].
Chen, Dongdong ;
He, Mingming ;
Fan, Qingnan ;
Liao, Jing ;
Zhang, Liheng ;
Hou, Dongdong ;
Yuan, Lu ;
Hua, Gang .
2019 IEEE WINTER CONFERENCE ON APPLICATIONS OF COMPUTER VISION (WACV), 2019, :1375-1383
[8]   Dynamic Convolution: Attention over Convolution Kernels [J].
Chen, Yinpeng ;
Dai, Xiyang ;
Liu, Mengchen ;
Chen, Dongdong ;
Yuan, Lu ;
Liu, Zicheng .
2020 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2020), 2020, :11027-11036
[9]   Xception: Deep Learning with Depthwise Separable Convolutions [J].
Chollet, Francois .
30TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2017), 2017, :1800-1807
[10]  
Deng J, 2009, PROC CVPR IEEE, P248, DOI 10.1109/CVPRW.2009.5206848