On the Uniform Convergence of Spherical Partial Sums of Fourier Series by the Double Walsh System

被引:0
作者
Sargsyan, S. A. [1 ]
Galoyan, L. N. [1 ]
机构
[1] Yerevan State Univ, Yerevan, Armenia
来源
JOURNAL OF CONTEMPORARY MATHEMATICAL ANALYSIS-ARMENIAN ACADEMY OF SCIENCES | 2023年 / 58卷 / 05期
关键词
spherical partial sum; double Fourier series; uniform convergence; Walsh system; UNIVERSAL; RESPECT;
D O I
10.3103/S1068362323050072
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we construct a two-variable integrable function U whose Fourier coefficients by the double Walsh system are positive on the spectrum and arranged in decreasing order in all directions. For each almost every where finite measurable function f(x, y),(x, y)is an element of[0,1)(2),and for any delta>0 it is possible to find a bounded function g(x, y)such that |{(x, y)is an element of[0,1)(2):g(x, y)not equal f(x, y)}<= delta, and |c(k,s)(g)|=c(k,s)(U)on the spectrum of the function g, and its spherical partial sums of the Fourier series by the double Walsh system converge uniformly on[0,1)(2)
引用
收藏
页码:370 / 383
页数:14
相关论文
共 19 条
[1]   ON CONVERGENCE AND GROWTH OF PARTIAL SUMS OF FOURIER SERIES [J].
CARLESON, L .
ACTA MATHEMATICA UPPSALA, 1966, 116 (1-2) :135-&
[2]  
FEFFERMAN C, 1971, ANN MATH, V94, P331
[3]  
Getsadze R. D., 1987, Math. USSR Sb, V56, P262, DOI [10.1070/SM1987v056n01ABEH003035, DOI 10.1070/SM1987V056N01ABEH003035]
[4]  
Golubov B., 1991, Walsh series and transforms. Theory and applications, Math. Appl. (Soviet Ser.), V64, DOI 10.1007/978-94-011-3288-6
[5]  
Grigoryan MG, 2021, IZV MATH+, V85, P241, DOI [10.4213/im8964, 10.1070/IM8964]
[6]   Functions with universal Fourier-Walsh series [J].
Grigoryan, M. G. .
SBORNIK MATHEMATICS, 2020, 211 (06) :850-874
[7]  
Grigoryan MG, 2020, MATH NOTES+, V108, P282, DOI [10.1134/S0001434620070299, 10.4213/mzm12720]
[8]   On the universal functions [J].
Grigoryan, M. G. ;
Galoyan, L. N. .
JOURNAL OF APPROXIMATION THEORY, 2018, 225 :191-208
[9]   On the universal function for the class LP[0,1], p ∈ (0,1) [J].
Grigoryan, M. G. ;
Sargsyan, A. A. .
JOURNAL OF FUNCTIONAL ANALYSIS, 2016, 270 (08) :3111-3133
[10]   Uniform convergence of the greedy algorithm with respect to the Walsh system [J].
Grigoryan, Martin .
STUDIA MATHEMATICA, 2010, 198 (02) :197-206