Ergodicity of 3D Stochastic Burgers Equation

被引:0
作者
Dong, Zhao [1 ]
Wu, Jiang Lun [2 ]
Zhou, Guo Li [3 ]
机构
[1] Chinese Acad Sci, RCSDS, Acad Math & Syst Sci, Beijing 100190, Peoples R China
[2] Swansea Univ, Dept Math, Computat Foundry, Swansea SA1 8EN, Wales
[3] Chongqing Univ, Coll Math & Stat, Chongqing 400044, Peoples R China
基金
国家重点研发计划;
关键词
3D stochastic Burgers equations; maximum principle; ergodicity; EXPONENTIAL ERGODICITY; STATIONARY SOLUTIONS; DRIVEN; TURBULENCE; LIMIT;
D O I
10.1007/s10114-023-2055-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
3D Burgers equation is an important model for turbulence. It is natural to expect the long-time behaviour for this hydrodynamics equation. However, there is no result about the long-time behaviour for this deterministic model. Surprisingly, if the system is perturbed by stochastic noise, we establish the existence and uniqueness of invariant measure for 3D stochastic Burgers equation.
引用
收藏
页码:498 / 510
页数:13
相关论文
共 40 条
[1]  
[Anonymous], 1890, Theory of Differential Equations
[2]   Thermodynamic Limit for Directed Polymers and Stationary Solutions of the Burgers Equation [J].
Bakhtin, Yuri ;
Li, Liying .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2019, 72 (03) :536-619
[3]  
Bakhtin Y, 2014, J AM MATH SOC, V27, P193
[4]   Burgers turbulence [J].
Bec, Jeremie ;
Khanin, Konstantin .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2007, 447 (1-2) :1-66
[5]   Shocklike dynamics of inelastic gases [J].
Ben-Naim, E ;
Chen, SY ;
Doolen, GD ;
Redner, S .
PHYSICAL REVIEW LETTERS, 1999, 83 (20) :4069-4072
[6]   THE STOCHASTIC BURGERS-EQUATION [J].
BERTINI, L ;
CANCRINI, N ;
JONALASINIO, G .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1994, 165 (02) :211-232
[7]  
Beteman H., 1915, MONTHLY WEATHER REV, V43, P163, DOI 10.1175/1520-0493(1915)43andlt
[8]  
163:SRROTMandgt
[9]  
2.0.CO
[10]  
2