EXISTENCE AND STABILITY OF BIFURCATING SOLUTION OF A CHEMOTAXIS MODEL

被引:11
作者
Chen, Mengxin [1 ]
Srivastava, Hari Mohan [2 ,3 ,4 ,5 ]
机构
[1] Henan Normal Univ, Coll Math & Informat Sci, Xinxiang 453007, Henan, Peoples R China
[2] Univ Victoria, Dept Math & Stat, Victoria, BC V8W 3R4, Canada
[3] Kyung Hee Univ, Ctr Converging Humanities, 26 Kyungheedae Ro, Seoul 02447, South Korea
[4] Azerbaijan Univ, Dept Math & Informat, 71 Jeyhun Hajibeyli St, AZ-1007 Baku, Azerbaijan
[5] Int Telemat Univ Uninettuno, Sect Math, I-00186 Rome, Italy
基金
中国博士后科学基金;
关键词
D O I
10.1090/proc/16536
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper focuses on a chemotaxis model with no-flux boundary conditions. We first discuss the stability of the unique positive equilibrium by treating the chemotaxis coefficient xi as the Hopf bifurcation and the steady state bifurcation parameter. Hereafter, we perform the existence and stability of the bifurcating solution, which bifurcated from the steady state bifurcation, by using the Crandall-Rabinowitz local bifurcation theory. It is noticed that few existing literatures give a discriminant to determine the stability of the bifurcating solution for the chemotaxis models. To this end, we will fill this gap, and an explicit formula will be presented. This technique can also be applied in other ecological models with chemotaxis.
引用
收藏
页码:4735 / 4749
页数:15
相关论文
共 14 条
[1]   Dynamics of a Harvested Predator-Prey Model with Predator-Taxis [J].
Chen, Mengxin ;
Wu, Ranchao .
BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2023, 46 (02)
[2]   Predator-taxis creates spatial pattern of a predator-prey model [J].
Chen, Mengxin ;
Zheng, Qianqian .
CHAOS SOLITONS & FRACTALS, 2022, 161
[3]  
CRANDALL MG, 1973, ARCH RATION MECH AN, V52, P161, DOI 10.1007/BF00282325
[4]  
Crandall MG., 1971, J FUNCT ANAL, V8, P321, DOI DOI 10.1016/0022-1236(71)90015-2
[5]   Global existence and asymptotic stability in a predator-prey chemotaxis model [J].
Fu, Shengmao ;
Miao, Liangying .
NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2020, 54
[6]   INITIATION OF SLIME MOLD AGGREGATION VIEWED AS AN INSTABILITY [J].
KELLER, EF ;
SEGEL, LA .
JOURNAL OF THEORETICAL BIOLOGY, 1970, 26 (03) :399-&
[7]   BOUNDEDNESS AND ASYMPTOTIC STABILITY IN A TWO-SPECIES PREDATOR-PREY CHEMOTAXIS MODEL [J].
Ma, Yu ;
Mu, Chunlai ;
Qiu, Shuyan .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2022, 27 (07) :4077-4095
[8]   Global boundedness in a two-species predator-prey chemotaxis model [J].
Miao, Liangying ;
Yang, He ;
Fu, Shengmao .
APPLIED MATHEMATICS LETTERS, 2021, 111
[9]   Mathematical models for chemotaxis and their applications in self-organisation phenomena [J].
Painter, Kevin J. .
JOURNAL OF THEORETICAL BIOLOGY, 2019, 481 :162-182
[10]   Pattern Formation in a Model of Acute Inflammation [J].
Penner, Kevin ;
Ermentrout, Bard ;
Swigon, David .
SIAM JOURNAL ON APPLIED DYNAMICAL SYSTEMS, 2012, 11 (02) :629-660