On shrinking projection method for cutter type mappings with nonsummable errors

被引:0
作者
Ibaraki, Takanori [1 ]
Saejung, Satit [2 ]
机构
[1] Yokohama Natl Univ, Dept Math Educ, Tokiwadai,Hodogaya Ku, Yokohama 2408501, Japan
[2] Khon Kaen Univ, Fac Sci, Dept Math, Khon Kaen 40002, Thailand
关键词
Fixed point; Shrinking projection method; Cutter type mapping; Metric projection; Generalized projection; Maximal monotone operator; PROXIMAL-TYPE ALGORITHM; NONEXPANSIVE-MAPPINGS; STRONG-CONVERGENCE; RETRACTIONS;
D O I
10.1186/s13660-023-03004-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove two key inequalities for metric and generalized projections in a certain Banach space. We then obtain some asymptotic behavior of a sequence generated by the shrinking projection method introduced by Takahashi et al. (J. Math. Anal. Appl. 341:276-286, 2008) where the computation allows some nonsummable errors. We follow the idea proposed by Kimura (Banach and Function Spaces IV (ISBFS 2012), pp. 303-311, 2014). The mappings studied in this paper are more general than the ones in (Ibaraki and Kimura in Linear Nonlinear Anal. 2:301-310, 2016; Ibaraki and Kajiba in Josai Math. Monogr. 11:105-120, 2018). In particular, the results in (Ibaraki and Kimura in Linear Nonlinear Anal. 2:301-310, 2016; Ibaraki and Kajiba in Josai Math. Monogr. 11:105-120, 2018) are both extended and supplemented. Finally, we discuss our results for finding a zero of maximal monotone operator and a minimizer of convex functions on a Banach space.
引用
收藏
页数:20
相关论文
共 28 条
  • [1] Alber Y.I, 1996, LECT NOTES PURE APPL, V178, P15
  • [2] Aoyama K, 2009, J NONLINEAR CONVEX A, V10, P131
  • [3] Atalan Y, 2019, J NONLINEAR CONVEX A, V20, P2371
  • [4] New iterative methods for nonlinear operators as concerns convex programming applicable in differential problems, image deblurring, and signal recovering problems
    Chairatsiripong, Chonjaroen
    Yambangwai, Damrongsak
    Thianwan, Tanakit
    [J]. MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2023, 46 (03) : 3332 - 3355
  • [5] CIORANESCU I., 1990, MATH APPL, V62, DOI [10.1007/978-94-009-2121-4, DOI 10.1007/978-94-009-2121-4]
  • [6] Iterative approximation of fixed points and applications to two-point second-order boundary value problems and to machine learning
    Hacioglu, Emirhan
    Gursoy, Faik
    Maldar, Samet
    Atalan, Yunus
    Milovanovic, Gradimir V.
    [J]. APPLIED NUMERICAL MATHEMATICS, 2021, 167 : 143 - 172
  • [7] HONDA T, 2010, INT J MATH STAT, V6, P46
  • [8] Ibaraki T., 2003, Abstract and Applied Analysis, V2003, P621, DOI 10.1155/S1085337503207065
  • [9] Ibaraki T., 2018, JOSAI MATH MONOGR, V11, P105
  • [10] Ibaraki T., 2016, Fixed Point Theory Appl, V2016, P48, DOI [10.1186/s13663-016-0535-2, DOI 10.1186/S13663-016-0535-2]