Roughening of two-dimensional interfaces in nonequilibrium phase-separated systems

被引:4
作者
Toner, John [1 ]
机构
[1] Univ Oregon, Inst Fundamental Sci, Dept Phys, Eugene, OR 97403 USA
关键词
D O I
10.1103/PhysRevE.107.044801
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
I show that nonequilibrium two-dimensional interfaces between three-dimensional phase separated fluids ex-hibit a peculiar "sublogarithmic" roughness. Specifically, an interface of lateral extent L will fluctuate vertically (i.e., normal to the mean surface orientation) a typical rms distance w equivalent to root <|h(r, t )|> proportional to [ln (L/a)](1/3) [where a is a microscopic length, and h(r, t) is the height of the interface at two-dimensional position r at time t]. In contrast, the roughness of equilibrium two-dimensional interfaces between three-dimensional fluids, obeys w proportional to [ln (L/a)](1/2). The exponent 1/3 for the active case is exact. In addition, the characteristic timescales tau(L) in the active case scale according to tau(L) proportional to L-3[ln (L/a)](1/3), in contrast to the simple tau(L) proportional to L-3 scaling found in equilibrium systems with conserved densities and no fluid flow.
引用
收藏
页数:4
相关论文
共 9 条
[1]  
Besse M, 2023, Arxiv, DOI arXiv:2209.05096
[2]   Interface fluctuations, Burgers equations, and coarsening under shear [J].
Bray, AJ ;
Cavagna, A ;
Travasso, RDM .
PHYSICAL REVIEW E, 2002, 65 (01)
[3]   THE SURFACE STATISTICS OF A GRANULAR AGGREGATE [J].
EDWARDS, SF ;
WILKINSON, DR .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1982, 381 (1780) :17-31
[4]   Capillary Interfacial Tension in Active Phase Separation [J].
Fausti, G. ;
Tjhung, E. ;
Cates, M. E. ;
Nardini, C. .
PHYSICAL REVIEW LETTERS, 2021, 127 (06)
[5]   NON-LINEAR ELASTIC THEORY OF SMECTIC LIQUID-CRYSTALS [J].
GRINSTEIN, G ;
PELCOVITS, RA .
PHYSICAL REVIEW A, 1982, 26 (02) :915-925
[6]   ANHARMONIC EFFECTS IN BULK SMECTIC LIQUID-CRYSTALS AND OTHER ONE-DIMENSIONAL SOLIDS [J].
GRINSTEIN, G ;
PELCOVITS, RA .
PHYSICAL REVIEW LETTERS, 1981, 47 (12) :856-859
[7]   DYNAMIC SCALING OF GROWING INTERFACES [J].
KARDAR, M ;
PARISI, G ;
ZHANG, YC .
PHYSICAL REVIEW LETTERS, 1986, 56 (09) :889-892
[8]   CROSSOVER SCALING FUNCTIONS AND RENORMALIZATION-GROUP TRAJECTORY INTEGRALS [J].
NELSON, DR .
PHYSICAL REVIEW B, 1975, 11 (09) :3504-3519
[9]  
Roy Avik, 2020, The Foundation for Research on Equal Opportunity