CRISPR/Cas9-mediated genome editing in vancomycin-producing strain Amycolatopsis keratiniphila

被引:3
|
作者
Hu, Mengyi [1 ]
Chen, Shuo [1 ]
Ni, Yao [1 ]
Wei, Wei [2 ]
Mao, Wenwei [1 ]
Ge, Mei [2 ]
Qian, Xiuping [1 ]
机构
[1] Shanghai Jiao Tong Univ, Sch Pharm, Shanghai, Peoples R China
[2] Shanghai Laiyi Ctr Biopharmaceut R&D, Shanghai, Peoples R China
基金
国家重点研发计划;
关键词
amycolatopsis; CRISPR/Cas9; genome editing; large fragment deletion; Eco-0501; vancomycin; STREPTOMYCES; BIOSYNTHESIS; CONSTRUCTION; EXPRESSION; VECTORS;
D O I
10.3389/fbioe.2023.1141176
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Amycolatopsis is an important source of diverse valuable bioactive natural products. The CRISPR/Cas-mediated gene editing tool has been established in some Amycolatopsis species and has accomplished the deletion of single gene or two genes. The goal of this study was to develop a high-efficient CRISPR/Cas9-mediated genome editing system in vancomycin-producing strain A. keratiniphila HCCB10007 and enhance the production of vancomycin by deleting the large fragments of ECO-0501 BGC. By adopting the promoters of gapdhp and ermE*p which drove the expressions of scocas9 and sgRNA, respectively, the all-in-one editing plasmid by homology-directed repair (HDR) precisely deleted the single gene gtfD and inserted the gene eGFP with the efficiency of 100%. Furthermore, The CRISPR/Cas9-mediated editing system successfully deleted the large fragments of cds13-17 (7.7 kb), cds23 (12.7 kb) and cds22-23 (21.2 kb) in ECO-0501 biosynthetic gene cluster (BGC) with high efficiencies of 81%-97% by selecting the sgRNAs with a suitable PAM sequence. Finally, a larger fragment of cds4-27 (87.5 kb) in ECO-0501 BGC was deleted by a dual-sgRNA strategy. The deletion of the ECO-0501 BGCs revealed a noticeable improvement of vancomycin production, and the mutants, which were deleted the ECO-0501 BGCs of cds13-17, cds22-23 and cds4-27, all achieved a 30%-40% increase in vancomycin yield. Therefore, the successful construction of the CRISPR/Cas9-mediated genome editing system and its application in large fragment deletion in A. keratiniphila HCCB10007 might provide a powerful tool for other Amycolatopsis species.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] CRISPR/Cas9-mediated genome editing in nonhuman primates
    Kang, Yu
    Chu, Chu
    Wang, Fang
    Niu, Yuyu
    DISEASE MODELS & MECHANISMS, 2019, 12 (10)
  • [2] Recent Advances in CRISPR/Cas9-Mediated Genome Editing in Dictyostelium
    Muramoto, Tetsuya
    Iriki, Hoshie
    Watanabe, Jun
    Kawata, Takefumi
    CELLS, 2019, 8 (01)
  • [3] Potential pitfalls of CRISPR/Cas9-mediated genome editing
    Peng, Rongxue
    Lin, Guigao
    Li, Jinming
    FEBS JOURNAL, 2016, 283 (07) : 1218 - 1231
  • [4] CRISPR/Cas9-mediated genome editing in Hevea brasiliensis
    Dai, Xuemei
    Yang, Xianfeng
    Wang, Chun
    Fan, Yueting
    Xin, Shichao
    Hua, Yuwei
    Wang, Kejian
    Huang, Huasun
    INDUSTRIAL CROPS AND PRODUCTS, 2021, 164
  • [5] CRISPR/Cas9-Mediated Genome Editing in Cancer Therapy
    Ding, Shuai
    Liu, Jinfeng
    Han, Xin
    Tang, Mengfan
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2023, 24 (22)
  • [6] Mosaicism in CRISPR/Cas9-mediated genome editing
    Mehravar, Maryam
    Shirazi, Abolfazl
    Nazari, Mahboobeh
    Banan, Mehdi
    DEVELOPMENTAL BIOLOGY, 2019, 445 (02) : 156 - 162
  • [7] Lycopene Is Enriched in Tomato Fruit by CRISPR/Cas9-Mediated Multiplex Genome Editing
    Li, Xindi
    Wang, Yanning
    Chen, Sha
    Tian, Huiqin
    Fu, Daqi
    Zhu, Benzhong
    Luo, Yunbo
    Zhu, Hongliang
    FRONTIERS IN PLANT SCIENCE, 2018, 9
  • [8] Approaches to Enhance Precise CRISPR/Cas9-Mediated Genome Editing
    Denes, Christopher E.
    Cole, Alexander J.
    Aksoy, Yagiz Alp
    Li, Geng
    Neely, Graham Gregory
    Hesselson, Daniel
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2021, 22 (16)
  • [9] Efficient CRISPR/Cas9-mediated genome editing in Rehmannia glutinosa
    Li, Xinrong
    Zuo, Xin
    Li, Mingming
    Yang, Xu
    Zhi, Jingyu
    Sun, Hongzheng
    Xie, Caixia
    Zhang, Zhongyi
    Wang, Fengqing
    PLANT CELL REPORTS, 2021, 40 (09) : 1695 - 1707
  • [10] Nano-vectors for CRISPR/Cas9-mediated genome editing
    Yang, Peng
    Lee, Athena Yue-Tung
    Xue, Jingjing
    Chou, Shih-Jie
    Lee, Calvin
    Tseng, Patrick
    Zhang, Tiffany X.
    Zhu, Yazhen
    Lee, Junseok
    Chiou, Shih-Hwa
    Tseng, Hsian-Rong
    NANO TODAY, 2022, 44