Nonparametric doubly robust estimation of causal effect on networks in observational studies

被引:1
作者
Liu, Jie [1 ]
Ye, Fangjuan [1 ]
Yang, Yang [1 ,2 ]
机构
[1] Univ Sci & Technol China, Sch Management, Hefei, Peoples R China
[2] Univ Sci & Technol China, Sch Management, Hefei 230026, Peoples R China
来源
STAT | 2023年 / 12卷 / 01期
基金
中国国家自然科学基金;
关键词
causal effect; general interference; network observational data; nonparametric doubly robust estimator; INFERENCE; REGRESSION; INTERFERENCE;
D O I
10.1002/sta4.549
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Interconnection of nodes takes great challenge to the estimation of causal effect in the network. In this study, we develop a nonparametric doubly robust (NDR) estimator to identify the causal effect in the presence of general interference on network observational data. The estimator combines the strengths of doubly robust mapping and nonparametric regression. Thus, it is consistent when either the treatment or the outcome model is properly specified and is free of parametric assumptions. The asymptotic properties of the proposed estimator are also proved. We demonstrate the robustness and effectiveness of NDR by simulation studies and apply this method to investigate the impact of installation of SnCR on ambient ozone concentration of 473 power plants in America.
引用
收藏
页数:14
相关论文
共 29 条
  • [1] [Anonymous], 1958, PLANNING EXPT
  • [2] ESTIMATING AVERAGE CAUSAL EFFECTS UNDER GENERAL INTERFERENCE, WITH APPLICATION TO A SOCIAL NETWORK EXPERIMENT
    Aronow, Peter M.
    Samii, Cyrus
    [J]. ANNALS OF APPLIED STATISTICS, 2017, 11 (04) : 1912 - 1947
  • [3] CAUSAL INFERENCE FROM OBSERVATIONAL STUDIES WITH CLUSTERED INTERFERENCE, WITH APPLICATION TO A CHOLERA VACCINE STUDY
    Barkley, Brian G.
    Hudgens, Michael G.
    Clemens, John D.
    Ali, Mohammad
    Emch, Michael E.
    [J]. ANNALS OF APPLIED STATISTICS, 2020, 14 (03) : 1432 - 1448
  • [4] Online cross-validation-based ensemble learning
    Benkeser, David
    Ju, Cheng
    Lendle, Sam
    van der Laan, Mark
    [J]. STATISTICS IN MEDICINE, 2018, 37 (02) : 249 - 260
  • [5] A generalized regression-adjustment estimator for average treatment effects from panel data
    Drukker, David M.
    [J]. STATA JOURNAL, 2016, 16 (04) : 826 - 836
  • [6] Identification and Estimation of Treatment and Interference Effects in Observational Studies on Networks
    Forastiere, Laura
    Airoldi, Edoardo M.
    Mealli, Fabrizia
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2021, 116 (534) : 901 - 918
  • [7] Generalized propensity score approach to causal inference with spatial interference
    Giffin, A.
    Reich, B. J.
    Yang, S.
    Rappold, A. G.
    [J]. BIOMETRICS, 2023, 79 (03) : 2220 - 2231
  • [8] Evaluating kindergarten retention policy: A case study of causal inference for multilevel observational data
    Hong, Guanglei
    Raudenbush, Stephen W.
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2006, 101 (475) : 901 - 910
  • [9] Non-parametric methods for doubly robust estimation of continuous treatment effects
    Kennedy, Edward H.
    Ma, Zongming
    McHugh, Matthew D.
    Small, Dylan S.
    [J]. JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2017, 79 (04) : 1229 - 1245
  • [10] On inverse probability-weighted estimators in the presence of interference
    Liu, L.
    Hudgens, M. G.
    Becker-Dreps, S.
    [J]. BIOMETRIKA, 2016, 103 (04) : 829 - 842