Nematic ordering in the Heisenberg spin-glass system in three dimensions

被引:3
作者
Tunca, Egemen [1 ]
Berker, A. Nihat [2 ,3 ,4 ]
机构
[1] Istanbul Univ, TEBIP High Performers Program, Board Higher Educ Turkey, TR-34452 Istanbul, Turkiye
[2] Kadir Has Univ, Fac Engn & Nat Sci, TR-34083 Istanbul, Turkiye
[3] TUBITAK Res Inst Fundamental Sci, TR-41470 Kocaeli, Turkiye
[4] MIT, Dept Phys, Cambridge, MA 02139 USA
关键词
HIERARCHICAL LATTICES; SYMMETRY-BREAKING; RENORMALIZATION; MODELS; PARAMETER;
D O I
10.1103/PhysRevE.107.014116
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Nematic ordering, where the spins globally align along a spontaneously chosen axis irrespective of direction, occurs in spin-glass systems of classical Heisenberg spins in d = 3. In this system where the nearest-neighbor interactions are quenched randomly ferromagnetic or antiferromagnetic, instead of the locally randomly ordered spin-glass phase, the system orders globally as a nematic phase. This nematic ordering of the Heisenberg spin -glass system is dramatically different from the spin-glass ordering of the Ising spin-glass system. The system is solved exactly on a hierarchical lattice and, equivalently, Migdal-Kadanoff approximately on a cubic lattice. The global phase diagram is calculated, exhibiting this nematic phase, and ferromagnetic, antiferromagnetic, disordered phases. The nematic phase of the classical Heisenberg spin-glass system is also found in other dimensions d > 2: We calculate nematic transition temperatures in 24 different dimensions in 2 < d 4.
引用
收藏
页数:7
相关论文
共 72 条
[1]  
AIZENMAN M, 1990, PHYS REV LETT, V64, P1311, DOI 10.1103/PhysRevLett.64.1311
[2]   ROUNDING OF 1ST-ORDER PHASE-TRANSITIONS IN SYSTEMS WITH QUENCHED DISORDER [J].
AIZENMAN, M ;
WEHR, J .
PHYSICAL REVIEW LETTERS, 1989, 62 (21) :2503-2506
[3]   Lower critical dimension of the random-field XY model and the zero-temperature critical line [J].
Akin, Kutay ;
Berker, A. Nihat .
PHYSICAL REVIEW E, 2022, 106 (01)
[4]   Scalings of domain wall energies in two dimensional Ising spin glasses [J].
Amoruso, C ;
Marinari, E ;
Martin, OC ;
Pagnani, A .
PHYSICAL REVIEW LETTERS, 2003, 91 (08)
[5]  
Artun E. C., 2023, CHAOS SOLITON FRACT, V167
[6]   Lower lower-critical spin-glass dimension from quenched mixed-spatial-dimensional spin glasses [J].
Atalay, Bora ;
Berker, A. Nihat .
PHYSICAL REVIEW E, 2018, 98 (04)
[7]   SUPERFLUIDITY AND PHASE-SEPARATION IN HELIUM FILMS [J].
BERKER, AN ;
NELSON, DR .
PHYSICAL REVIEW B, 1979, 19 (05) :2488-2503
[8]   RENORMALIZATION-GROUP CALCULATIONS OF FINITE SYSTEMS - ORDER PARAMETER AND SPECIFIC-HEAT FOR EPITAXIAL ORDERING [J].
BERKER, AN ;
OSTLUND, S .
JOURNAL OF PHYSICS C-SOLID STATE PHYSICS, 1979, 12 (22) :4961-4975
[9]   RENORMALIZATION-GROUP TREATMENT OF A POTTS LATTICE GAS FOR KRYPTON ADSORBED ONTO GRAPHITE [J].
BERKER, AN ;
OSTLUND, S ;
PUTNAM, FA .
PHYSICAL REVIEW B, 1978, 17 (09) :3650-3665
[10]   HIERARCHICAL-MODELS AND CHAOTIC SPIN-GLASSES [J].
BERKER, AN ;
MCKAY, SR .
JOURNAL OF STATISTICAL PHYSICS, 1984, 36 (5-6) :787-793