Machine learning techniques for pulmonary nodule computer-aided diagnosis using CT images: A systematic review

被引:16
作者
Jin, Haizhe [1 ]
Yu, Cheng [1 ]
Gong, Zibo [2 ]
Zheng, Renjie [3 ]
Zhao, Yinan [4 ]
Fu, Quanwei [5 ]
机构
[1] Northeastern Univ, Sch Business Adm, Dept Ind Engn, 195, Chuangxin Rd, Shenyang 110167, Peoples R China
[2] China Med Univ, Shengjing Hosp, Dept Radiol, 36, Sanhao St, Shenyang 110004, Peoples R China
[3] Northeastern Univ, Sch Software Coll, Dept Informat Secur, 195, Chuangxin Rd, Hunnan Dist, Shenyang 110167, Peoples R China
[4] China Med Univ, Affliated Hosp 1, Dept Neurol, Shenyang 110001, Liaoning, Peoples R China
[5] Dongguan Kanghua Hosp, 1000 Dongguan Ave, Donggua 523080, Peoples R China
基金
中国国家自然科学基金;
关键词
Computed tomography; Pulmonary nodule; Computer-aided diagnosis; Machine learning; Deep learning; CONVOLUTIONAL NEURAL-NETWORK; FALSE-POSITIVE REDUCTION; ACTIVE CONTOUR MODEL; LUNG NODULE; AUTOMATIC DETECTION; DATABASE CONSORTIUM; GENETIC ALGORITHM; CANCER DETECTION; TOMOGRAPHY; CLASSIFICATION;
D O I
10.1016/j.bspc.2022.104104
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Objective: Early detection of pulmonary nodules is critical for the prevention and treatment of lung cancer. Concomitant with recent advancements in computer performance and intelligent algorithms, the efficacy of pulmonary nodule computer-aided diagnosis (CAD) has been continuously improving, and various algorithms have been proposed using different datasets. This study systematically analyzed and compared the performance of machine learning algorithms using the same dataset in the diagnosis of pulmonary nodules through a literature review.Methods: The widely used LIDC-IDRI dataset and its subset LUNA16 were used as data objects. The SpringerLink, Science Direct, IEEE Xplore, and PubMed scientific databases were searched, and seventy-five papers were analyzed.Results: Deep-learning-based CAD was found to be superior to conventional machine-learning-based CAD in terms of the number of published studies and algorithm performance. The best performances were as follows: feedforward neural network (FNN) and convolutional neural network (CNN) for detecting pulmonary nodules; region-based CNN (R-CNN) for the segmentation of pulmonary nodules; residual neural network (ResNet) for the classification of nodules and non-nodules; and deep neural network (DNN) for the classification of benign and malignancy.Conclusion: To further extend the application of CAD in clinical practice, the appropriate algorithm type should be used based on the characteristics of the task. The CAD process should be divided into logical stages and the optimal algorithm for each stage should be used to increase the reliability of the process.Significance: The CAD performance of numerous algorithms on the same dataset is systematically compared and ideas for future exploration are provided.
引用
收藏
页数:26
相关论文
共 122 条
[1]   Multi-view Convolutional Recurrent Neural Networks for Lung Cancer Nodule Identification [J].
Abid, Mian Muhammad Naeem ;
Zia, Tehseen ;
Ghafoor, Mubeen ;
Windridge, David .
NEUROCOMPUTING, 2021, 453 :299-311
[2]   Appraisal of deep-learning techniques on computer-aided lung cancer diagnosis with computed tomography screening [J].
Agnes, S. Akila ;
Anitha, J. .
JOURNAL OF MEDICAL PHYSICS, 2020, 45 (02) :98-106
[3]  
Aloysius N, 2017, 2017 INTERNATIONAL CONFERENCE ON COMMUNICATION AND SIGNAL PROCESSING (ICCSP), P588, DOI 10.1109/ICCSP.2017.8286426
[4]   Review of deep learning: concepts, CNN architectures, challenges, applications, future directions [J].
Alzubaidi, Laith ;
Zhang, Jinglan ;
Humaidi, Amjad J. ;
Al-Dujaili, Ayad ;
Duan, Ye ;
Al-Shamma, Omran ;
Santamaria, J. ;
Fadhel, Mohammed A. ;
Al-Amidie, Muthana ;
Farhan, Laith .
JOURNAL OF BIG DATA, 2021, 8 (01)
[5]   The Lung Image Database Consortium, (LIDC) and Image Database Resource Initiative (IDRI): A Completed Reference Database of Lung Nodules on CT Scans [J].
Armato, Samuel G., III ;
McLennan, Geoffrey ;
Bidaut, Luc ;
McNitt-Gray, Michael F. ;
Meyer, Charles R. ;
Reeves, Anthony P. ;
Zhao, Binsheng ;
Aberle, Denise R. ;
Henschke, Claudia I. ;
Hoffman, Eric A. ;
Kazerooni, Ella A. ;
MacMahon, Heber ;
van Beek, Edwin J. R. ;
Yankelevitz, David ;
Biancardi, Alberto M. ;
Bland, Peyton H. ;
Brown, Matthew S. ;
Engelmann, Roger M. ;
Laderach, Gary E. ;
Max, Daniel ;
Pais, Richard C. ;
Qing, David P-Y ;
Roberts, Rachael Y. ;
Smith, Amanda R. ;
Starkey, Adam ;
Batra, Poonam ;
Caligiuri, Philip ;
Farooqi, Ali ;
Gladish, Gregory W. ;
Jude, C. Matilda ;
Munden, Reginald F. ;
Petkovska, Iva ;
Quint, Leslie E. ;
Schwartz, Lawrence H. ;
Sundaram, Baskaran ;
Dodd, Lori E. ;
Fenimore, Charles ;
Gur, David ;
Petrick, Nicholas ;
Freymann, John ;
Kirby, Justin ;
Hughes, Brian ;
Casteele, Alessi Vande ;
Gupte, Sangeeta ;
Sallam, Maha ;
Heath, Michael D. ;
Kuhn, Michael H. ;
Dharaiya, Ekta ;
Burns, Richard ;
Fryd, David S. .
MEDICAL PHYSICS, 2011, 38 (02) :915-931
[6]   A radiogenomic dataset of non-small cell lung cancer [J].
Bakr, Shaimaa ;
Gevaert, Olivier ;
Echegaray, Sebastian ;
Ayers, Kelsey ;
Zhou, Mu ;
Shafiq, Majid ;
Zheng, Hong ;
Benson, Jalen Anthony ;
Zhang, Weiruo ;
Leung, Ann N. C. ;
Kadoch, Michael ;
Hoang, Chuong D. ;
Shrager, Joseph ;
Quon, Andrew ;
Rubin, Daniel L. ;
Plevritis, Sylvia K. ;
Napel, Sandy .
SCIENTIFIC DATA, 2018, 5
[7]   Dual-branch residual network for lung nodule segmentation [J].
Cao, Haichao ;
Liu, Hong ;
Song, Enmin ;
Hung, Chih-Cheng ;
Ma, Guangzhi ;
Xu, Xiangyang ;
Jin, Renchao ;
Lu, Jianguo .
APPLIED SOFT COMPUTING, 2020, 86
[8]  
Chan S, 2019, 2019 IEEE 10TH ANNUAL INFORMATION TECHNOLOGY, ELECTRONICS AND MOBILE COMMUNICATION CONFERENCE (IEMCON), P488, DOI [10.1109/IEMCON.2019.8936260, 10.1109/iemcon.2019.8936260]
[9]   Research on Key Algorithms of the Lung CAD System Based on Cascade Feature and Hybrid Swarm Intelligence Optimization for MKL-SVM [J].
Chang, Jiayue ;
Li, Yang ;
Zheng, Hewei .
COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE, 2021, 2021
[10]   Review and performance comparison of SVM- and ELM-based classifiers [J].
Chorowski, Jan ;
Wang, Jian ;
Zurada, Jacek M. .
NEUROCOMPUTING, 2014, 128 :507-516