Sign-changing solutions for a modified quasilinear Kirchhoff-Schrodinger-Poisson system via perturbation method

被引:1
作者
Zhang, Jing [1 ]
Ji, Chao [2 ]
机构
[1] Inner Mongolia Normal Univ, Math Sci Coll, Hohhot, Peoples R China
[2] East China Univ Sci & Technol, Sch Math, Shanghai, Peoples R China
基金
上海市自然科学基金; 中国国家自然科学基金;
关键词
Quasilinear; Kirchhoff-Schrodinger-Poisson system; perturbation method; sign-changing solutions; ELLIPTIC-EQUATIONS; ASYMPTOTIC-BEHAVIOR; POSITIVE SOLUTIONS; EXISTENCE;
D O I
10.1080/17476933.2022.2069762
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we consider the following quasilinear Kirchhoff-Schrodinger-Poisson system: {-(a + b integral(R3) vertical bar del u vertical bar(2) dx) Delta u +V(x)u - 1/2u Delta(u(2)) + phi u = g(u), x is an element of R-3, -Delta phi = u(2), x is an element of R-3, where a, b are positive constants, V(x) is a smooth potential function and g is an appropriate nonlinear function. To overcome the technical difficulties caused by the quasilinear term, the perturbation method of adding 4-Laplacian operator is adapted to consider the perturbation problem, so that the corresponding functional has both smoothness and compactness in the appropriate space. Moreover, when g satisfies the appropriate hypotheses, a sign-changing solution u(0) of above problem can be obtained by taking advantage of constraint variational method, the quantitative deformation lemma and approximation technique, which has precisely two nodal domains.
引用
收藏
页码:1715 / 1733
页数:19
相关论文
共 25 条
[1]   Three nodal solutions of singularly perturbed elliptic equations on domains without topology [J].
Bartsch, T ;
Weth, T .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2005, 22 (03) :259-281
[2]   SCHRODINGER-KIRCHHOFF-POISSON TYPE SYSTEMS [J].
Batkam, Cyril Joel ;
Santos Junior, Joao R. .
COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2016, 15 (02) :429-444
[3]   Existence of multiple solutions for modified Schrodinger-Kirchhoff-Poisson type systems via perturbation method with sign-changing potential [J].
Chen, Jianhua ;
Tang, Xianhua ;
Gao, Zu .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2017, 73 (03) :505-519
[4]   The existence of sign-changing solution for a class of quasilinear Schrodinger-Poisson systems via perturbation method [J].
Chen, Lizhen ;
Feng, Xiaojing ;
Hao, Xinan .
BOUNDARY VALUE PROBLEMS, 2019, 2019 (01)
[5]   Solitary waves for nonlinear Klein-Gordon-Maxwell and Schrodinger-Maxwell equations [J].
D'Aprile, T ;
Mugnai, D .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2004, 134 :893-906
[6]  
Ding L, 2016, TOPOL METHOD NONL AN, V47, P241
[7]   Existence of non-trivial solution for a class of modified Schrodinger-Poisson equations via perturbation method [J].
Feng, Xiaojing ;
Zhang, Xing .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2016, 442 (02) :673-684
[8]   Existence and asymptotic behaviour of solutions for a quasi-linear Schrodinger-Poisson system with a critical nonlinearity [J].
Figueiredo, Giovany M. ;
Siciliano, Gaetano .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2020, 71 (04)
[9]   Quasi-linear Schrodinger-Poisson system under an exponential critical nonlinearity: existence and asymptotic behaviour of solutions [J].
Figueiredo, Giovany M. ;
Siciliano, Gaetano .
ARCHIV DER MATHEMATIK, 2019, 112 (03) :313-327
[10]  
Ji C, 2019, ANN MAT PUR APPL, V198, P1563, DOI 10.1007/s10231-019-00831-2