Simultaneous 18-FDG PET and MR imaging in lower extremity arterial disease

被引:1
作者
Koppara, Tobias [1 ,2 ]
Dregely, Isabel [3 ]
Nekolla, Stephan G. [2 ,3 ]
Naehrig, Joerg [4 ]
Langwieser, Nicolas [1 ]
Bradaric, Christian [1 ]
Ganter, Carl [5 ]
Laugwitz, Karl-Ludwig [1 ,2 ]
Schwaiger, Markus [2 ,3 ]
Ibrahim, Tareq [1 ]
机构
[1] Tech Univ Munich, Sch Med & Hlth, Dept Internal Med Cardiol & Angiol 1, Munich, Germany
[2] DZHK German Ctr Cardiovasc Res, Partner Site Munich Heart Alliance, Munich, Germany
[3] Tech Univ Munich, Sch Med & Hlth, Dept Nucl Med, Munich, Germany
[4] Tech Univ Munich, Inst Pathol, Sch Med & Hlth, Munich, Germany
[5] Tech Univ Munich, Inst Radiol, Sch Med & Hlth, Munich, Germany
关键词
optical coherence tomography; magnetic resonance imaging (MRI); FDG PET = F-18 fluorodeoxyglucose positron emission tomography; atherectomy; peripheral arterial disease; CAROTID ATHEROSCLEROTIC PLAQUE; SIMULTANEOUS 18F-FDG PET; HISTOLOGICAL CLASSIFICATION; CORONARY-ARTERIES; RISK-FACTORS; INFLAMMATION; TOMOGRAPHY; LESIONS; MECHANISMS; BIOMARKERS;
D O I
10.3389/fcvm.2024.1352696
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Background: Simultaneous positron emission tomography (PET) and magnetic resonance imaging (MRI) is a novel hybrid imaging method integrating the advances of morphological tissue characterization of MRI with the pathophysiological insights of PET applications. Aim: This study evaluated the use of simultaneous 18-FDG PET/MR imaging for characterizing atherosclerotic lesions in lower extremity arterial disease (LEAD). Methods: Eight patients with symptomatic stenoses of the superficial femoral artery (SFA) under simultaneous acquisition of 18-FDG PET and contrast-enhanced MRI using an integrated whole-body PET/MRI scanner. Invasive plaque characterization of the SFA was performed by intravascular imaging using optical coherence tomography. Histological analysis of plaque specimens was performed after directional atherectomy. Results: MRI showed contrast enhancement at the site of arterial stenosis, as assessed on T2-w and T1-w images, compared to a control area of the contralateral SFA (0.38 +/- 0.15 cm vs. 0.23 +/- 0.11 cm; 1.77 +/- 0.19 vs. 1.57 +/- 0.15; p-value <0.05). On PET imaging, uptake of 18F-FDG (target-to-background ratio TBR > 1) at the level of symptomatic stenosis was observed in all but one patient. Contrast medium-induced MR signal enhancement was detected in all plaques, whereas FDG uptake in PET imaging was increased in lesions with active fibroatheroma and reduced in fibrocalcified lesions. Conclusion: In this multimodal imaging study, we report the feasibility and challenges of simultaneous PET/MR imaging of LEAD, which might offer new perspectives for risk estimation.
引用
收藏
页数:10
相关论文
共 36 条
[1]   PET/MRI of atherosclerosis [J].
Aizaz, Mueez ;
Moonen, Rik P. M. ;
van der Pol, Jochem A. J. ;
Prieto, Claudia ;
Botnar, Rene M. ;
Kooi, M. Eline .
CARDIOVASCULAR DIAGNOSIS AND THERAPY, 2020, 10 (04) :1120-1139
[2]   PET Radiotracers in Atherosclerosis: A Review [J].
Blanchard, Isabella ;
Vootukuru, Nishita ;
Bhattaru, Abhijit ;
Patil, Shivaraj ;
Rojulpote, Chaitanya .
CURRENT PROBLEMS IN CARDIOLOGY, 2023, 48 (11)
[3]   Classification of human carotid atherosclerotic lesions with in vivo multicontrast magnetic resonance imaging [J].
Cai, JM ;
Hastukami, TS ;
Ferguson, MS ;
Small, R ;
Polissar, NL ;
Yuan, C .
CIRCULATION, 2002, 106 (11) :1368-1373
[4]   Evaluation of neovessels in atherosclerotic plaques of rabbits using an albumin-binding intravascular contrast agent and MRI [J].
Cornily, Jean-Christophe ;
Hyafil, Fabien ;
Calcagno, Claudia ;
Briley-Saebo, Karen C. ;
Tunstead, James ;
Aguinaldo, Juan-Gilberto S. ;
Mani, Venkatesh ;
Lorusso, Vito ;
Cavagna, Friedrich M. ;
Fayad, Zahi A. .
JOURNAL OF MAGNETIC RESONANCE IMAGING, 2008, 27 (06) :1406-1411
[5]   Observations With Simultaneous 18F-FDG PET and MR Imaging in Peripheral Artery Disease [J].
Dregely, Isabel ;
Koppara, Tobias ;
Nekolla, Stephan G. ;
Naehrig, Joerg ;
Kuhs, Kristin ;
Langwieser, Nicolas ;
Dzijan-Horn, Marijana ;
Ganter, Carl ;
Joner, Michael ;
Laugwitz, Karl-Ludwig ;
Schwaiger, Markus ;
Ibrahim, Tareq .
JACC-CARDIOVASCULAR IMAGING, 2017, 10 (06) :709-711
[6]   Neointimal responses 3 months after 32P β-emitting stent placement [J].
Farb, A ;
Tang, AL ;
Shroff, S ;
Sweet, W ;
Virmani, R .
INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 2000, 48 (03) :889-898
[7]   In vivo magnetic resonance evaluation of atherosclerotic plaques in the human thoracic aorta - A comparison with transesophageal echocardiography [J].
Fayad, ZA ;
Nahar, T ;
Fallon, JT ;
Goldman, M ;
Aguinaldo, JG ;
Badimon, JJ ;
Shinnar, M ;
Chesebro, JH ;
Fuster, V .
CIRCULATION, 2000, 101 (21) :2503-2509
[8]   Distribution of Inflammation Within Carotid Atherosclerotic Plaques With High-Risk Morphological Features A Comparison Between Positron Emission Tomography Activity, Plaque Morphology, and Histopathology [J].
Figueroa, Amparo L. ;
Subramanian, Sharath S. ;
Cury, Ricardo C. ;
Truong, Quynh A. ;
Gardecki, Joseph A. ;
Tearney, Guillermo J. ;
Hoffmann, Udo ;
Brady, Thomas J. ;
Tawakol, Ahmed .
CIRCULATION-CARDIOVASCULAR IMAGING, 2012, 5 (01) :69-77
[9]   Peripheral arterial disease detection, awareness, and treatment in primary care [J].
Hirsch, AT ;
Criqui, MH ;
Treat-Jacobson, D ;
Regensteiner, JG ;
Creager, MA ;
Olin, JW ;
Krook, SH ;
Hunninghake, DB ;
Comerota, AJ ;
Walsh, ME ;
McDermott, MM ;
Hiatt, WR .
JAMA-JOURNAL OF THE AMERICAN MEDICAL ASSOCIATION, 2001, 286 (11) :1317-1324
[10]   Quantitative magnetic resonance imaging analysis of neovasculature volume in carotid atherosclerotic plaque [J].
Kerwin, W ;
Hooker, A ;
Spilker, M ;
Vicini, P ;
Ferguson, M ;
Hatsukami, T ;
Yuan, C .
CIRCULATION, 2003, 107 (06) :851-856