The number of representations of arithmetic progressions by integral quadratic forms

被引:0
作者
Han, Seoyeong [1 ]
Kim, Kyoungmin [1 ]
机构
[1] Hannam Univ, Dept Math, Daejeon 34430, South Korea
关键词
Representations of quadratic forms; Arithmetic progressions; Modular forms;
D O I
10.1007/s13226-023-00524-w
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let f be a positive definite integral quadratic forms and let r (n, f) be the number of representations of an integer n by f. In this article, we prove that if f (z) is a modular form of weight k 2 and level N, then f(m,r)(z) is a modular form of weight k/2 and level Nm(2) (see Definition 2.3 for the definition of f(m,r)(z)). As applications, we prove that if n = 3 (mod 8), then r (n, x(2) + 7y(2) + 7z(2)) = r (n, 2x(2) + 4y(2) + 2xy + 7z(2)), and if n = 1 (mod 3), then r (n, x(2) + y(2) + 2z(2) + 3t(2) + 3w(2)) = r (n, x(2) + y(2) + 2z(2) + 2t(2) + 2zt + 6w(2)).
引用
收藏
页码:841 / 847
页数:7
相关论文
共 8 条
  • [1] Davenport H., 2000, GRADUATE TEXTS MATH, V74, pxiv+177
  • [2] The number of representations of squares by integral ternary quadratic forms
    Kim, Kyoungmin
    Oh, Byeong-Kweon
    [J]. JOURNAL OF NUMBER THEORY, 2017, 180 : 629 - 642
  • [3] Kitaoka Y., 1993, Arithmetic of quadratic forms
  • [4] O'Meara OT., 1963, Introduction to quadratic forms, DOI [10.1007/978-3-642-62031-7, DOI 10.1007/978-3-642-62031-7]
  • [5] Ono K., 2004, CBMS Regional Conf. Series in Math, V102
  • [6] Pei D., 2001, Result Math, V39, P292, DOI [10.1007/BF03322691, DOI 10.1007/BF03322691]
  • [7] Siegel C. L., 1966, Gesammelte Abhandlungen, V1, P326
  • [8] Wang X., 2012, Modular Forms with Integral and Half-Integral Weights, DOI [10.1007/978-3-642-29302-3, DOI 10.1007/978-3-642-29302-3]