Machine learning for automated experimentation in scanning transmission electron microscopy

被引:43
作者
Kalinin, Sergei V. [1 ]
Mukherjee, Debangshu [2 ]
Roccapriore, Kevin [3 ]
Blaiszik, Benjamin J. [4 ,5 ]
Ghosh, Ayana [2 ]
Ziatdinov, Maxim A. [2 ,3 ]
Al-Najjar, Anees [2 ]
Doty, Christina [6 ]
Akers, Sarah [6 ]
Rao, Nageswara S. [2 ]
Agar, Joshua C. [7 ]
Spurgeon, Steven R. [6 ,8 ]
机构
[1] Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA
[2] Oak Ridge Natl Lab, Computat Sci & Engn Div, Oak Ridge, TN 37831 USA
[3] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA
[4] Argonne Natl Lab, Data Sci & Learning Div, Chicago, IL 60439 USA
[5] Univ Chicago, Globus, Chicago, IL 60637 USA
[6] Pacific Northwest Natl Lab, Natl Secur Directorate, Richland, WA 99352 USA
[7] Drexel Univ, Dept Mat Sci & Engn, Philadelphia, PA 19104 USA
[8] Univ Washington, Dept Phys, Seattle, WA 98195 USA
基金
美国国家科学基金会;
关键词
ABERRATION CORRECTION; SYNCHROTRON; FERROELECTRICITY; LATTICE; PHYSICS; DRIFT;
D O I
10.1038/s41524-023-01142-0
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Machine learning (ML) has become critical for post-acquisition data analysis in (scanning) transmission electron microscopy, (S)TEM, imaging and spectroscopy. An emerging trend is the transition to real-time analysis and closed-loop microscope operation. The effective use of ML in electron microscopy now requires the development of strategies for microscopy-centric experiment workflow design and optimization. Here, we discuss the associated challenges with the transition to active ML, including sequential data analysis and out-of-distribution drift effects, the requirements for edge operation, local and cloud data storage, and theory in the loop operations. Specifically, we discuss the relative contributions of human scientists and ML agents in the ideation, orchestration, and execution of experimental workflows, as well as the need to develop universal hyper languages that can apply across multiple platforms. These considerations will collectively inform the operationalization of ML in next-generation experimentation.
引用
收藏
页数:16
相关论文
共 116 条
[51]   Polar metals by geometric design [J].
Kim, T. H. ;
Puggioni, D. ;
Yuan, Y. ;
Xie, L. ;
Zhou, H. ;
Campbell, N. ;
Ryan, P. J. ;
Choi, Y. ;
Kim, J-W ;
Patzner, J. R. ;
Ryu, S. ;
Podkaminer, J. P. ;
Irwin, J. ;
Ma, Y. ;
Fennie, C. J. ;
Rzchowski, M. S. ;
Pan, X. Q. ;
Gopalan, V. ;
Rondinelli, J. M. ;
Eom, C. B. .
NATURE, 2016, 533 (7601) :68-+
[52]  
Kirkland Earl J., 1998, Advanced computing in electron microscopy, V12
[53]   Lattice imaging at an accelerating voltage of 30 kV using an in-lens type cold field-emission scanning electron microscope [J].
Konno, Mitsuru ;
Ogashiwa, Takeshi ;
Sunaoshi, Takeshi ;
Orai, Yoshihisa ;
Sato, Mitsugu .
ULTRAMICROSCOPY, 2014, 145 :28-35
[54]  
Krivanek OL, 1997, INST PHYS CONF SER, P35
[55]   Deep Learning Enabled Strain Mapping of Single-Atom Defects in Two-Dimensional Transition Metal Dichalcogenides with Sub-Picometer Precision [J].
Lee, Chia-Hao ;
Khan, Abid ;
Luo, Di ;
Santos, Tatiane P. ;
Shi, Chuqiao ;
Janicek, Blanka E. ;
Kang, Sangmin ;
Zhu, Wenjuan ;
Sobh, Nahil A. ;
Schleife, Andre ;
Clark, Bryan K. ;
Huang, Pinshane Y. .
NANO LETTERS, 2020, 20 (05) :3369-3377
[56]   The Naked Chip: No trade secret or hardware trojan can hide from ptychographic X-ray laminography [J].
Levi, Anthony F. J. ;
Aeppli, Gabriel .
IEEE SPECTRUM, 2022, 59 (05) :38-43
[57]   Forecasting of in situ electron energy loss spectroscopy [J].
Lewis, Nicholas R. ;
Jin, Yicheng ;
Tang, Xiuyu ;
Shah, Vidit ;
Doty, Christina ;
Matthews, Bethany E. ;
Akers, Sarah ;
Spurgeon, Steven R. .
NPJ COMPUTATIONAL MATERIALS, 2022, 8 (01)
[58]   Quantification of flexoelectricity in PbTiO3/SrTiO3 superlattice polar vortices using machine learning and phase-field modeling [J].
Li, Q. ;
Nelson, C. T. ;
Hsu, S. -L. ;
Damodaran, A. R. ;
Li, L. -L. ;
Yadav, A. K. ;
McCarter, M. ;
Martin, L. W. ;
Ramesh, R. ;
Kalinin, S. V. .
NATURE COMMUNICATIONS, 2017, 8
[59]   Analytical transmission electron microscopy for emerging advanced materials [J].
Lin, Yue ;
Zhou, Min ;
Tai, Xiaolin ;
Li, Hangfei ;
Han, Xiao ;
Yu, Jiaguo .
MATTER, 2021, 4 (07) :2309-2339
[60]   BEAM: A computational workflow system for managing and modeling material characterization data in HPC environments [J].
Lingerfelt, E. J. ;
Belianinov, A. ;
Endeve, E. ;
Ovchinnikov, O. ;
Somnath, S. ;
Borreguero, J. M. ;
Grodowitz, N. ;
Park, B. ;
Archibald, R. K. ;
Symons, C. T. ;
Kalinin, S. V. ;
Messer, O. E. B. ;
Shankar, M. ;
Jesse, S. .
INTERNATIONAL CONFERENCE ON COMPUTATIONAL SCIENCE 2016 (ICCS 2016), 2016, 80 :2276-2280