Machine learning for automated experimentation in scanning transmission electron microscopy

被引:42
作者
Kalinin, Sergei V. [1 ]
Mukherjee, Debangshu [2 ]
Roccapriore, Kevin [3 ]
Blaiszik, Benjamin J. [4 ,5 ]
Ghosh, Ayana [2 ]
Ziatdinov, Maxim A. [2 ,3 ]
Al-Najjar, Anees [2 ]
Doty, Christina [6 ]
Akers, Sarah [6 ]
Rao, Nageswara S. [2 ]
Agar, Joshua C. [7 ]
Spurgeon, Steven R. [6 ,8 ]
机构
[1] Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA
[2] Oak Ridge Natl Lab, Computat Sci & Engn Div, Oak Ridge, TN 37831 USA
[3] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA
[4] Argonne Natl Lab, Data Sci & Learning Div, Chicago, IL 60439 USA
[5] Univ Chicago, Globus, Chicago, IL 60637 USA
[6] Pacific Northwest Natl Lab, Natl Secur Directorate, Richland, WA 99352 USA
[7] Drexel Univ, Dept Mat Sci & Engn, Philadelphia, PA 19104 USA
[8] Univ Washington, Dept Phys, Seattle, WA 98195 USA
基金
美国国家科学基金会;
关键词
ABERRATION CORRECTION; SYNCHROTRON; FERROELECTRICITY; LATTICE; PHYSICS; DRIFT;
D O I
10.1038/s41524-023-01142-0
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Machine learning (ML) has become critical for post-acquisition data analysis in (scanning) transmission electron microscopy, (S)TEM, imaging and spectroscopy. An emerging trend is the transition to real-time analysis and closed-loop microscope operation. The effective use of ML in electron microscopy now requires the development of strategies for microscopy-centric experiment workflow design and optimization. Here, we discuss the associated challenges with the transition to active ML, including sequential data analysis and out-of-distribution drift effects, the requirements for edge operation, local and cloud data storage, and theory in the loop operations. Specifically, we discuss the relative contributions of human scientists and ML agents in the ideation, orchestration, and execution of experimental workflows, as well as the need to develop universal hyper languages that can apply across multiple platforms. These considerations will collectively inform the operationalization of ML in next-generation experimentation.
引用
收藏
页数:16
相关论文
共 116 条
[21]   A Primer to Single-Particle Cryo-Electron Microscopy [J].
Cheng, Yifan ;
Grigorieff, Nikolaus ;
Penczek, Pawel A. ;
Walz, Thomas .
CELL, 2015, 161 (03) :438-449
[22]   AI-enabled high-resolution scanning coherent diffraction imaging [J].
Cherukara, Mathew J. ;
Zhou, Tao ;
Nashed, Youssef ;
Enfedaque, Pablo ;
Hexemer, Alex ;
Harder, Ross J. ;
Holt, Martin, V .
APPLIED PHYSICS LETTERS, 2020, 117 (04)
[23]   Atomic-Scale Compensation Phenomena at Polar Interfaces [J].
Chisholm, Matthew F. ;
Luo, Weidong ;
Oxley, Mark P. ;
Pantelides, Sokrates T. ;
Lee, Ho Nyung .
PHYSICAL REVIEW LETTERS, 2010, 105 (19)
[24]   Simultaneous inversion of optical and infra-red image data to determine thermo-mechanical properties of thermally conductive solid materials [J].
Cottrill, Anton L. ;
Goulet, Remi ;
Fremy, Flavien ;
Meulemans, Johann ;
Sheldon, Mackenzie R. ;
Bazant, Martin Z. .
INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2020, 163
[25]   SCANNING-TRANSMISSION ELECTRON-MICROSCOPY [J].
CREWE, AV .
JOURNAL OF MICROSCOPY-OXFORD, 1974, 100 (APR) :247-259
[26]   Design of a graphical user interface for few-shot machine learning classification of electron microscopy data [J].
Doty, Christina ;
Gallagher, Shaun ;
Cui, Wenqi ;
Chen, Wenya ;
Bhushan, Shweta ;
Oostrom, Marjolein ;
Akers, Sarah ;
Spurgeon, Steven R. .
COMPUTATIONAL MATERIALS SCIENCE, 2022, 203
[27]   Fast inference of deep neural networks in FPGAs for particle physics [J].
Duarte, J. ;
Han, S. ;
Harris, P. ;
Jindariani, S. ;
Kreinar, E. ;
Kreis, B. ;
Ngadiuba, J. ;
Pierini, M. ;
Rivera, R. ;
Tran, N. ;
Wu, Z. .
JOURNAL OF INSTRUMENTATION, 2018, 13
[28]   Atom-by-Atom Direct Writing [J].
Dyck, Ondrej ;
Lupini, Andrew R. ;
Jesse, Stephen .
NANO LETTERS, 2023, 23 (06) :2339-2346
[29]  
Fan C, 2018, SYNCHROTRON RAD MAT, DOI DOI 10.1002/9783527697106
[30]  
Fiedler K. R., 2022, Evaluating stage motion for automated electron microscopy, DOI [10.1093/micmic/ozad108, DOI 10.1093/MICMIC/OZAD108]