Machine learning for automated experimentation in scanning transmission electron microscopy

被引:28
作者
Kalinin, Sergei V. [1 ]
Mukherjee, Debangshu [2 ]
Roccapriore, Kevin [3 ]
Blaiszik, Benjamin J. [4 ,5 ]
Ghosh, Ayana [2 ]
Ziatdinov, Maxim A. [2 ,3 ]
Al-Najjar, Anees [2 ]
Doty, Christina [6 ]
Akers, Sarah [6 ]
Rao, Nageswara S. [2 ]
Agar, Joshua C. [7 ]
Spurgeon, Steven R. [6 ,8 ]
机构
[1] Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA
[2] Oak Ridge Natl Lab, Computat Sci & Engn Div, Oak Ridge, TN 37831 USA
[3] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA
[4] Argonne Natl Lab, Data Sci & Learning Div, Chicago, IL 60439 USA
[5] Univ Chicago, Globus, Chicago, IL 60637 USA
[6] Pacific Northwest Natl Lab, Natl Secur Directorate, Richland, WA 99352 USA
[7] Drexel Univ, Dept Mat Sci & Engn, Philadelphia, PA 19104 USA
[8] Univ Washington, Dept Phys, Seattle, WA 98195 USA
基金
美国国家科学基金会;
关键词
ABERRATION CORRECTION; SYNCHROTRON; FERROELECTRICITY; LATTICE; PHYSICS; DRIFT;
D O I
10.1038/s41524-023-01142-0
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Machine learning (ML) has become critical for post-acquisition data analysis in (scanning) transmission electron microscopy, (S)TEM, imaging and spectroscopy. An emerging trend is the transition to real-time analysis and closed-loop microscope operation. The effective use of ML in electron microscopy now requires the development of strategies for microscopy-centric experiment workflow design and optimization. Here, we discuss the associated challenges with the transition to active ML, including sequential data analysis and out-of-distribution drift effects, the requirements for edge operation, local and cloud data storage, and theory in the loop operations. Specifically, we discuss the relative contributions of human scientists and ML agents in the ideation, orchestration, and execution of experimental workflows, as well as the need to develop universal hyper languages that can apply across multiple platforms. These considerations will collectively inform the operationalization of ML in next-generation experimentation.
引用
收藏
页数:16
相关论文
共 116 条
  • [1] Abadi M., 2015, TENSORFLOW LARGE SCA
  • [2] Revealing ferroelectric switching character using deep recurrent neural networks
    Agar, Joshua C.
    Naul, Brett
    Pandya, Shishir
    van Der Walt, Stefan
    Maher, Joshua
    Ren, Yao
    Chen, Long-Qing
    Kalinin, Sergei, V
    Vasudevan, Rama K.
    Cao, Ye
    Bloom, Joshua S.
    Martin, Lane W.
    [J]. NATURE COMMUNICATIONS, 2019, 10 (1)
  • [3] Rapid and flexible segmentation of electron microscopy data using few-shot machine learning
    Akers, Sarah
    Kautz, Elizabeth
    Trevino-Gavito, Andrea
    Olszta, Matthew
    Matthews, Bethany E.
    Wang, Le
    Du, Yingge
    Spurgeon, Steven R.
    [J]. NPJ COMPUTATIONAL MATERIALS, 2021, 7 (01)
  • [4] Al-Najjar A., 2022, 2022 IEEE 18 INT C E
  • [5] Virtual Infrastructure Twin for Computing-Instrument Ecosystems: Software and Measurements
    Al-Najjar, Anees
    Rao, Nageswara S. V.
    [J]. IEEE ACCESS, 2023, 11 : 20254 - 20266
  • [6] Learning from data to design functional materials without inversion symmetry
    Balachandran, Prasanna V.
    Young, Joshua
    Lookman, Turab
    Rondinelli, James M.
    [J]. NATURE COMMUNICATIONS, 2017, 8
  • [7] Hybrid Improper Ferroelectricity: A Mechanism for Controllable Polarization-Magnetization Coupling
    Benedek, Nicole A.
    Fennie, Craig J.
    [J]. PHYSICAL REVIEW LETTERS, 2011, 106 (10)
  • [8] Imaging intracellular fluorescent proteins at nanometer resolution
    Betzig, Eric
    Patterson, George H.
    Sougrat, Rachid
    Lindwasser, O. Wolf
    Olenych, Scott
    Bonifacino, Juan S.
    Davidson, Michael W.
    Lippincott-Schwartz, Jennifer
    Hess, Harald F.
    [J]. SCIENCE, 2006, 313 (5793) : 1642 - 1645
  • [9] Multivariate statistical methods for the analysis of microscope image series: applications in materials science
    Bonnet, N
    [J]. JOURNAL OF MICROSCOPY, 1998, 190 : 2 - 18
  • [10] Artificial intelligence and pattern recognition techniques in microscope image processing and analysis
    Bonnet, N
    [J]. ADVANCES IN IMAGING AND ELECTRON PHYSICS, VOL 114, 2000, 114 : 1 - 77