Probing the Respective Strengthening Mechanism of High-entropy (CoCrFeNi/CoCrFeNiMn) and Single-principle-element (Cu-4Al) Alloys

被引:4
作者
Fan, Liwen [1 ,2 ]
Zhou, Jian [1 ]
Fang, Xiaotian [3 ]
Wang, Yanfei [4 ]
Ma, Xiaolong [3 ,6 ]
Tsai, Ming-Hung [5 ]
Zhu, Yuntian [6 ]
机构
[1] Southeast Univ, Sch Mat Sci & Engn, Nanjing 211189, Peoples R China
[2] China Energy Sci & Technol Res Inst, Nanjing 210023, Peoples R China
[3] North Carolina State Univ, Dept Mat Sci & Engn, Raleigh, NC 27695 USA
[4] Xi An Jiao Tong Univ, Sch Aerosp, State Key Lab Mech Struct Strength & Vibrat, Xian 710049, Peoples R China
[5] Natl Chung Hsing Univ, Dept Mat Sci & Engn, Taichung 402, Taiwan
[6] City Univ Hong Kong, Hong Kong Inst Adv Study, Coll Sci & Engn, Dept Mat Sci & Engn, Hong Kong, Peoples R China
关键词
High-entropy alloys; Mechanical properties; Deformation mechanism; Lomer-Cottrell locks; SHORT-RANGE ORDER; CU-AL ALLOYS; DEFORMATION MECHANISMS; GRAIN-GROWTH; PHASE; MICROSTRUCTURE; EVOLUTION; DISLOCATIONS; STABILITY; BEHAVIOR;
D O I
10.1016/j.jallcom.2023.172185
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The strengthening mechanism of high-entropy alloys (CoCrFeNi/CoCrFeNiMn) is investigated and compared with a single-principle-element alloy (Cu-4Al) with similar stacking fault energy. Hall-Petch effect dominates the strain hardening of both alloys during progressive grain refinement to the ultrafine regime. Moreover, the high density of Lomer-Cottrell locks offers unique and extra hardening to ultrafine-grained high-entropy alloys.
引用
收藏
页数:6
相关论文
共 47 条
[1]   Significance of stacking fault energy in bulk nanostructured materials: Insights from Cu and its binary alloys as model systems [J].
An, X. H. ;
Wu, S. D. ;
Wang, Z. G. ;
Zhang, Z. F. .
PROGRESS IN MATERIALS SCIENCE, 2019, 101 :1-45
[2]  
Anderson P M., 2017, Theory of Dislocations, V3rd edn
[3]   An alternative physical explanation of the Hall-Petch relation [J].
Bata, V ;
Pereloma, EV .
ACTA MATERIALIA, 2004, 52 (03) :657-665
[4]   Multicomponent high-entropy Cantor alloys [J].
Cantor, B. .
PROGRESS IN MATERIALS SCIENCE, 2021, 120
[5]   Unusual activated processes controlling dislocation motion in body-centered-cubic high-entropy alloys [J].
Chen, Bing ;
Li, Suzhi ;
Zong, Hongxiang ;
Ding, Xiangdong ;
Sun, Jun ;
Ma, Evan .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2020, 117 (28) :16199-16206
[6]   Direct observation of chemical short-range order in a medium-entropy alloy [J].
Chen, Xuefei ;
Wang, Qi ;
Cheng, Zhiying ;
Zhu, Mingliu ;
Zhou, Hao ;
Jiang, Ping ;
Zhou, Lingling ;
Xue, Qiqi ;
Yuan, Fuping ;
Zhu, Jing ;
Wu, Xiaolei ;
Ma, En .
NATURE, 2021, 592 (7856) :712-+
[7]  
Egerton R. F., 2011, Electron Energy-Loss Spectroscopy in the Electron Microscope
[8]   Nucleation of deformation twins in nanocrystalline fcc alloys [J].
Fang, Xiaotian ;
Ma, Xiaolong ;
Zhang, Liwen ;
Zhu, Yuntian .
PHILOSOPHICAL MAGAZINE, 2016, 96 (36) :3790-3802
[9]   LATENT HARDENING IN COPPER AND ALUMINUM SINGLE-CRYSTALS [J].
FRANCIOSI, P ;
BERVEILLER, M ;
ZAOUI, A .
ACTA METALLURGICA, 1980, 28 (03) :273-283
[10]   Microstructure and strengthening mechanisms in an FCC structured single-phase nanocrystalline Co25Ni25Fe25Al7.5Cu17.5 high-entropy alloy [J].
Fu, Zhiqiang ;
Chen, Weiping ;
Wen, Haiming ;
Zhang, Dalong ;
Chen, Zhen ;
Zheng, Baolong ;
Zhou, Yizhang ;
Lavernia, Enrique J. .
ACTA MATERIALIA, 2016, 107 :59-71