Nonlinear waves, modulations and rogue waves in the modular Korteweg-de Vries equation

被引:6
作者
Slunyaev, A. V. [1 ,2 ]
Kokorina, A. V. [2 ]
Pelinovsky, E. N. [1 ,2 ]
机构
[1] Natl Res Univ Higher Sch Econ, Nizhnii Novgorod, Russia
[2] Russian Acad Sci, Inst Appl Phys, Nizhnii Novgorod, Russia
来源
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION | 2023年 / 127卷
基金
俄罗斯科学基金会;
关键词
Modular Korteweg-de Vries equation; Quadratically cubic Korteweg-de Vries equation; Modular envelope equation; Quadratically cubic nonlinear schrodinger equation; Envelope solitons; Modulational instability; Modular rogue waves; GENERATION; SOLITONS; DYNAMICS;
D O I
10.1016/j.cnsns.2023.107527
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Effects of nonlinear dynamics of solitary waves and wave modulations within the modular (also known as quadratically cubic) Korteweg-de Vries equation are studied analytically and numerically. Large wave events can occur in the course of interaction between solitons of different signs. Stable and unstable (finite-time-lived) breathers can be generated in inelastic collisions of solitons and from perturbations of two polarities. A nonlinear evolution equation on long modulations of quasi-sinusoidal waves is derived, which is the modular or quadratically cubic nonlinear Schrodinger equation. Its solutions in the form of envelope solitons describe breathers of the modular Korteweg-de Vries equation. The instability conditions are obtained from the linear stability analysis of periodic wave perturbations. Rogue-wave-type solutions emerging due to the modulational instability in the modular Korteweg-de Vries equation are simulated numerically. They exhibit similar wave amplification, but develop faster than in the Benjamin-Feir instability described by the cubic nonlinear Schrodinger equation. (c) 2023 Elsevier B.V. All rights reserved.
引用
收藏
页数:18
相关论文
共 31 条
[1]   Waves that appear from nowhere and disappear without a trace [J].
Akhmediev, N. ;
Ankiewicz, A. ;
Taki, M. .
PHYSICS LETTERS A, 2009, 373 (06) :675-678
[2]   Extended criterion for the modulation instability [J].
Amiranashvili, Shalva ;
Tobisch, Elena .
NEW JOURNAL OF PHYSICS, 2019, 21 (03)
[3]   Baseband modulation instability as the origin of rogue waves [J].
Baronio, Fabio ;
Chen, Shihua ;
Grelu, Philippe ;
Wabnitz, Stefan ;
Conforti, Matteo .
PHYSICAL REVIEW A, 2015, 91 (03)
[4]   On the generation of solitons and breathers in the modified Korteweg-de Vries equation [J].
Clarke, S ;
Grimshaw, R ;
Miller, P ;
Pelinovsky, E ;
Talipova, T .
CHAOS, 2000, 10 (02) :383-392
[5]  
[Диденкулова Екатерина Геннадьевна Didenkulova Ekaterina Gennadievna], 2019, [Вычислительные технологии, Vychislitel'nye tekhnologii], V24, P52
[6]  
Drazin P.G., 1993, Solitons, An Introduction
[7]   Well-posedness and dynamics of solutions to the generalized KdV with low power nonlinearity [J].
Friedman, Isaac ;
Riano, Oscar ;
Roudenko, Svetlana ;
Son, Diana ;
Yang, Kai .
NONLINEARITY, 2023, 36 (01) :584-635
[8]   KORTEWEG-DEVRIES EQUATION AND GENERALIZATIONS .6. METHODS FOR EXACT SOLUTION [J].
GARDNER, CS ;
GREENE, JM ;
KRUSKAL, MD ;
MIURA, RM .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1974, 27 (01) :97-133
[9]   Robustness of the absolute Rosenau-Hyman |K |(p, p) equation with non-integer p [J].
Garralon-Lopez, Ruben ;
Rus, Francisco ;
Villatoro, Francisco R. .
CHAOS SOLITONS & FRACTALS, 2023, 169
[10]   Wave group dynamics in weakly nonlinear long-wave models [J].
Grimshaw, R ;
Pelinovsky, D ;
Pelinovsky, E ;
Talipova, T .
PHYSICA D-NONLINEAR PHENOMENA, 2001, 159 (1-2) :35-57