Classification based on sparse representations of attributes derived from empirical mode decomposition in a multiclass problem of motor imagery in EEG signals

被引:0
|
作者
de Menezes, Jose Antonio Alves [1 ]
Gomes, Juliana Carneiro [1 ,2 ]
Hazin, Vitor de Carvalho [3 ]
Dantas, Julio Cesar Sousa [3 ]
Rodrigues, Marcelo Cairrao Araujo [4 ]
dos Santos, Wellington Pinheiro [1 ,2 ]
机构
[1] Univ Pernambuco, Escola Politecn, Recife, Brazil
[2] Univ Fed Pernambuco, Dept Engn Biomed, Recife, Brazil
[3] Neurobots Res & Dev Ltd, Recife, Brazil
[4] Univ Fed Pernambuco, Dept Fisiol & Farmacol, Recife, Brazil
关键词
Motor imagery; Sparse Representation Classification; Empirical Mode Decomposition; Sparse representation; Brain-computer interfaces; BRAIN COMPUTER-INTERFACE; FEATURE-SELECTION; OPTIMIZATION; RECOGNITION; MOVEMENTS; SEARCH;
D O I
10.1007/s12553-023-00770-2
中图分类号
R-058 [];
学科分类号
摘要
PurposeThe non-stationary nature of the EEG signal poses challenges for the classification of motor imagery. Sparse Representation Classification (SRC) appears as an alternative for classification of untrained conditions and, therefore, useful in motor imagery. Empirical Mode Decomposition (EMD) deals with signals of this nature and appears at the rear of the classification, supporting the generation of attributes.MethodsIn this work we evaluate the combination of these methods in a multiclass classification problem, comparing them with a conventional method in order to determine if their performance is regular. For comparison with SRC we use Multilayer Perceptron (MLP). We also evaluated a hybrid approach for classification of sparse representations with MLP (RSMLP). For comparison with EMD we used filtering by frequency bands. Attribute selection methods were used to select the most significant ones, specifically Random Forest and Particle Swarm Optimization. Finally, we used data augmentation to get a more voluminous base.ResultsRegarding the first dataset, we observed that the classifiers that use sparse representation have results equivalent to each other, but they outperform the conventional MLP model. The SRC achieves an average accuracy of 83.07% while the MLP is 71.71%, representing a gain of over 15.84%. The use of EMD in relation to other attribute processing techniques is not superior. However, EMD does not influence negatively, there is an opportunity for improvement. Finally, the use of data augmentation proved to be important to obtain relevant results. In the second dataset, we did not observe the same results. Models based on sparse representation (SRC, SRMLP etc.) do not achieve the performance of other conventional models. The best sparse models achieve an average accuracy of 66.7% among the subjects in the base, while other models reach 76.05%.ConclusionThe improvement of self-adaptive mechanisms that respond efficiently to the user's context is a good way to achieve improvements in motor imagery applications. However, other scenarios should be investigated, since the advantage of these methods was not proven in all datasets studied. There is still room for improvement, such as optimizing the dictionary of sparse representation in the context of motor imagery. Investing efforts in synthetically increasing the training base has also proved important to reduce the costs of this group of applications.
引用
收藏
页码:747 / 767
页数:21
相关论文
共 50 条
  • [21] Truncation thresholds based empirical mode decomposition approach for classification performance of motor imagery BCI systems
    Dagdevir, Eda
    Tokmakci, Mahmut
    CHAOS SOLITONS & FRACTALS, 2021, 152
  • [22] Classification of Seizure and Nonseizure EEG Signals Using Empirical Mode Decomposition
    Bajaj, Varun
    Pachori, Ram Bilas
    IEEE TRANSACTIONS ON INFORMATION TECHNOLOGY IN BIOMEDICINE, 2012, 16 (06): : 1135 - 1142
  • [23] Application of Empirical Mode Decomposition for Feature Extraction from EEG Signals
    Kumari, S.
    Upadhyay, R.
    Padhy, P. K.
    Kankar, P. K.
    2015 INTERNATIONAL CONFERENCE ON COMPUTER, COMMUNICATION AND CONTROL (IC4), 2015,
  • [24] Application of Empirical Mode Decomposition for Feature Extraction from EEG Signals
    Kumari, S.
    Upadhyay, R.
    Padhy, P. K.
    Kankar, P. K.
    2015 INTERNATIONAL CONFERENCE ON COMPUTING, COMMUNICATION AND SECURITY (ICCCS), 2015,
  • [25] Statistical Wavelets With Harmony Search- Based Optimal Feature Selection of EEG Signals for Motor Imagery Classification
    Mohdiwale, Samrudhi
    Sahu, Mridu
    Sinha, G. R.
    Bhateja, Vikrant
    IEEE SENSORS JOURNAL, 2021, 21 (13) : 14263 - 14271
  • [26] Attention-based CNN model for motor imagery classification from nonlinear EEG signals
    Lv, Dong-Mei
    Dang, Wei-Dong
    Feng, Jia-Heng
    Gao, Zhong-Ke
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2024, 655
  • [27] Motor Imagery signal Classification for BCI System Using Empirical Mode Decomposition and Bandpower Feature Extraction
    Trad, Dalila
    Al-Ani, Tarik
    Jemni, Mohamed
    BRAIN-BROAD RESEARCH IN ARTIFICIAL INTELLIGENCE AND NEUROSCIENCE, 2016, 7 (02): : 5 - 16
  • [28] Classification of EEG Motor imagery multi class signals based on Cross Correlation
    Krishna, D. Hari
    Pasha, I. A.
    Savithri, T. Satya
    INTERNATIONAL CONFERENCE ON COMPUTATIONAL MODELLING AND SECURITY (CMS 2016), 2016, 85 : 490 - 495
  • [29] Multivariate variational mode decomposition & phase space reconstruction based motor imagery EEG classification
    Dovedi, Tanvi
    Upadhyay, Rahul
    Kumar, Vinay
    COMPUTERS & ELECTRICAL ENGINEERING, 2023, 108
  • [30] Motor Imagery BCI Classification Based on Multivariate Variational Mode Decomposition
    Sadiq, Muhammad Tariq
    Yu, Xiaojun
    Yuan, Zhaohui
    Aziz, Muhammad Zulkifal
    Rehman, Naveed ur
    Ding, Weiping
    Xiao, Gaoxi
    IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTATIONAL INTELLIGENCE, 2022, 6 (05): : 1177 - 1189