The beta Liu-type estimator:simulation and application

被引:7
作者
Erkoc, Ali [1 ]
Ertan, Esra [2 ]
Algamal, Zakariya Yahya [3 ,4 ]
Akay, Kadri Ulas [2 ]
机构
[1] Mimar Sinan Fine Arts Univ, Fac Sci & Letters, Dept Stat, Istanbul, Turkiye
[2] Istanbul Univ, Sci Fac, Dept Math, Istanbul, Turkiye
[3] Univ Mosul, Dept Stat & Informat, Mosul, Iraq
[4] Univ Warith Al Anbiyaa, Coll Engn, Karbala, Iraq
来源
HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS | 2023年 / 52卷 / 03期
关键词
Beta regression model; Liu-type estimator; maximum likelihood estimator; multicollinearity; RIDGE-REGRESSION; ESTIMATOR; COMBAT;
D O I
10.15672/hujms.1145607
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The Beta Regression Model (BRM) is commonly used while analyzing data where the dependent variable is restricted to the interval [0, 1] for example proportion or probability. The Maximum Likelihood Estimator (MLE) is used to estimate the regression coefficients of BRMs. But in the presence of multicollinearity, MLE is very sensitive to high correlation among the explanatory variables. For this reason, we introduce a new biased estimator called the Beta Liu-Type Estimator (BLTE) to overcome the multicollinearity problem in the case that dependent variable follows a Beta distribution. The proposed estimator is a general estimator which includes other biased estimators, such as the Ridge Estimator, Liu Estimator, and the estimators with two biasing parameters as special cases in BRM. The performance of the proposed new estimator is compared to the MLE and other biased estimators in terms of the Estimated Mean Squared Error (EMSE) criterion by conducting a simulation study. Finally, a numerical example is given to show the benefit of the proposed estimator over existing estimators.
引用
收藏
页码:828 / 840
页数:13
相关论文
共 27 条
[1]   Dawoud-Kibria Estimator for Beta Regression Model: Simulation and Application [J].
Abonazel, Mohamed R. ;
Dawoud, Issam ;
Awwad, Fuad A. ;
Lukman, Adewale F. .
FRONTIERS IN APPLIED MATHEMATICS AND STATISTICS, 2022, 8
[2]   A New Two-Parameter Estimator for Beta Regression Model: Method, Simulation, and Application [J].
Abonazel, Mohamed R. ;
Algamal, Zakariya Yahya ;
Awwad, Fuad A. ;
Taha, Ibrahim M. .
FRONTIERS IN APPLIED MATHEMATICS AND STATISTICS, 2022, 7
[3]   Beta ridge regression estimators: simulation and application [J].
Abonazel, Mohamed R. ;
Taha, Ibrahim M. .
COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2023, 52 (09) :4280-4292
[4]   A new improved Liu-type estimator for Poisson regression models [J].
Akay, Kadri Ulas ;
Ertan, Esra .
HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2022, 51 (05) :1484-1503
[5]  
Akram M.N., AIMS MATH, V7
[6]   Proposed methods in estimating the ridge regression parameter in Poisson regression model [J].
Alanaz, Mazin M. ;
Algamal, Zakariya Yahya .
ELECTRONIC JOURNAL OF APPLIED STATISTICAL ANALYSIS, 2018, 11 (02) :506-515
[7]  
Algamal Z.Y., 2021, CONCURR COMP-PRACT E, V34, P1
[8]   DIAGNOSTIC IN POISSON REGRESSION MODELS [J].
Algamal, Zakariya Y. .
ELECTRONIC JOURNAL OF APPLIED STATISTICAL ANALYSIS, 2012, 5 (02) :178-186
[9]   Liu-type estimator for the gamma regression model [J].
Algamal, Zakariya Yahya ;
Asar, Yasin .
COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2020, 49 (08) :2035-2048
[10]   Performance of ridge estimator in inverse Gaussian regression model [J].
Algamal, Zakariya Yahya .
COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2019, 48 (15) :3836-3849