On gonality and canonical models of unicuspidal rational curves

被引:0
作者
Galdino, Naama [1 ]
Martins, Renato Vidal [2 ]
Nicolau, Danielle [1 ]
机构
[1] Univ Fed Minas Gerais, Dept Matemat, ICEx, Ave Antonio Carlos 6627, BR-30123970 Belo Horizonte, MG, Brazil
[2] UFV, Dept Matemat, CAF, Rodovia LMG 818 km 06, BR-35690000 Florestal, MG, Brazil
关键词
Linear series; Rational curves; Singular curves; Semigroups; NON-GORENSTEIN CURVES;
D O I
10.1007/s00233-023-10354-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the gonality of a curve C and its canonical model C', by means of unicuspidal rational curves, where those concepts can be better understood. We start by a general formula for the dimension of the space of hypersurfaces of a fixed degree containing C', which we apply to some particular cases. Then we classify unicuspidal rational curves via different notions of gonality, and by its canonical model, up to genus 6. We do it using general methods applied to certain families of curves of arbitrary genus.
引用
收藏
页码:79 / 108
页数:30
相关论文
共 18 条
[1]   COMPACTIFYING JACOBIAN [J].
ALTMAN, AB ;
KLEIMAN, SL .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1976, 82 (06) :947-949
[2]   Analytically unramified one-dimensional semilocal rings and their value semigroups [J].
Barucci, V ;
D'Anna, M ;
Fröberg, R .
JOURNAL OF PURE AND APPLIED ALGEBRA, 2000, 147 (03) :215-254
[3]  
BEHNKE K, 1991, COMPOS MATH, V77, P233
[4]   Severi dimensions for unicuspidal curves [J].
Cotterill, Ethan ;
Lima, Vinicius Lara ;
Martins, Renato Vidal .
JOURNAL OF ALGEBRA, 2022, 597 :299-331
[5]   DIMENSION COUNTS FOR CUSPIDAL RATIONAL CURVES VIA SEMIGROUPS [J].
Cotterill, Ethan ;
Feital, Lia ;
Martins, Renato Vidal .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2020, 148 (08) :3217-3231
[6]  
EISENBUD D, 1987, P SYMP PURE MATH, V46, P3
[7]   DETERMINANTAL EQUATIONS FOR CURVES OF HIGH DEGREE [J].
EISENBUD, D ;
KOH, J ;
STILLMAN, M .
AMERICAN JOURNAL OF MATHEMATICS, 1988, 110 (03) :513-539
[8]   Gonality of non-Gorenstein curves of genus five [J].
Feital, Lia ;
Martins, Renato Vidal .
BULLETIN OF THE BRAZILIAN MATHEMATICAL SOCIETY, 2014, 45 (04) :649-670
[9]  
Gagliardi E., ARXIV
[10]  
Galdino N., FAMILY RATIONAL CURV