This study was conducted to determine the effect of the radiation source and radiation time on the methylene blue (MB) solution by adding Ni-Cd/Al2O3 to the percent degradation of MB. To investigate similar purposes, the pH of the MB solution varied as well. The preparation, characterization, and photocatalytic activity of Ni-Cd/Al2O3 are three steps in this research. The Ni-Cd was prepared by mixing Ni(NO3)(2)center dot 6H(2)O and Cd(NO3)(2)center dot 4H(2)O. Various concentrations of Ni-Cd were mixed with Al2O3, then heated, stirred, dried, and calcined to form Ni-Cd/Al2O3 powder. The dried powder catalysts were characterized using Field emission scanning electron microscopy (FESEM), Energy-dispersive X-ray spectroscopy (EDS), Brunauer-emmett-teller (BET), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and Diffused reflectance spectrometer spectra (DR-UV-Vis). Higher degradation was observed at pH 11, when MB was degraded by 68% and 76% using the 5Ni-2Cd/Al2O3 and 6Ni-1Cd/Al2O3 catalysts, respectively. The 6Ni-1Cd/Al2O3 sample has higher absorption, less surface area, and less band gap; therefore, it has higher performance against degraded MB in the solution. In summary, 6Ni-1Cd/Al2O3 is capable of degrading MB and can be utilized in MB dye waste. Copyright (c) 2023 by Authors, Published by BCREC Group.