Streamlining Multimodal Data Fusion in Wireless Communication and Sensor Networks

被引:0
作者
Bocus, Mohammud Junaid [1 ]
Wang, Xiaoyang [2 ]
Piechocki, Robert J. [1 ]
机构
[1] Univ Bristol, Dept Elect & Elect Engn, Bristol BS8 1UB, England
[2] Univ Exeter, Dept Comp Sci, Exeter EX4 4RN, England
基金
英国工程与自然科学研究理事会;
关键词
VQVAE; WiFi CSI; CSI feedback; deep learning; multimodal data fusion; MASSIVE MIMO; CSI FEEDBACK;
D O I
10.1109/TCCN.2023.3322983
中图分类号
TN [电子技术、通信技术];
学科分类号
0809 ;
摘要
This paper presents a novel approach for multimodal data fusion based on the Vector-Quantized Variational Autoencoder (VQVAE) architecture. The proposed method is simple yet effective in achieving excellent reconstruction performance on paired MNIST-SVHN data and WiFi spectrogram data. Additionally, the multimodal VQVAE model is extended to the 5G communication scenario, where an end-to-end Channel State Information (CSI) feedback system is implemented to compress data transmitted between the base-station (eNodeB) and User Equipment (UE), without significant loss of performance. The proposed model learns a discriminative compressed feature space for various types of input data (CSI, spectrograms, natural images, etc), making it a suitable solution for applications with limited computational resources.
引用
收藏
页码:252 / 262
页数:11
相关论文
共 33 条
[1]   Translation Resilient Opportunistic WiFi Sensing [J].
Bocus, Mohammud J. ;
Li, Wenda ;
Paulavicius, Jonas ;
McConville, Ryan ;
Santos-Rodriguez, Raul ;
Chetty, Kevin ;
Piechocki, Robert .
2020 25TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2021, :5627-5633
[2]  
Bocus W., 2022, FIGSHARE, DOI [10.6084/m9.figshare.c.5551209.v1[34]W.-T., DOI 10.6084/M9.FIGSHARE.C.5551209.V1[34]W.-T]
[3]   Lightweight Convolutional Neural Networks for CSI Feedback in Massive MIMO [J].
Cao, Zheng ;
Shih, Wan-Ting ;
Guo, Jiajia ;
Wen, Chao-Kai ;
Jin, Shi .
IEEE COMMUNICATIONS LETTERS, 2021, 25 (08) :2624-2628
[4]   Device free human activity and fall recognition using WiFi channel state information (CSI) [J].
Damodaran, Neena ;
Haruni, Elis ;
Kokhkharova, Muyassar ;
Schaefer, Joerg .
CCF TRANSACTIONS ON PERVASIVE COMPUTING AND INTERACTION, 2020, 2 (01) :1-17
[5]   An iterative thresholding algorithm for linear inverse problems with a sparsity constraint [J].
Daubechies, I ;
Defrise, M ;
De Mol, C .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2004, 57 (11) :1413-1457
[6]  
Donoho David L., 2010, 2010 IEEE Information Theory Workshop on Information Theory (ITW), DOI 10.1109/ITWKSPS.2010.5503193
[7]   Overview of Deep Learning-Based CSI Feedback in Massive MIMO Systems [J].
Guo, Jiajia ;
Wen, Chao-Kai ;
Jin, Shi ;
Li, Geoffrey Ye .
IEEE TRANSACTIONS ON COMMUNICATIONS, 2022, 70 (12) :8017-8045
[8]   Tool Release: Gathering 802.11n Traces with Channel State Information [J].
Halperin, Daniel ;
Hu, Wenjun ;
Sheth, Anmol ;
Wetherall, David .
ACM SIGCOMM COMPUTER COMMUNICATION REVIEW, 2011, 41 (01) :53-53
[9]   PRVNet: A Novel Partially-Regularized Variational Autoencoders for Massive MIMO CSI Feedback [J].
Hussien, Mostafa ;
Kim Khoa Nguyen ;
Cheriet, Mohamed .
2022 IEEE WIRELESS COMMUNICATIONS AND NETWORKING CONFERENCE (WCNC), 2022, :2286-2291
[10]   Self-supervised multimodal fusion transformer for passive activity recognition [J].
Koupai, Armand K. ;
Bocus, Mohammud J. ;
Santos-Rodriguez, Raul ;
Piechocki, Robert J. ;
McConville, Ryan .
IET WIRELESS SENSOR SYSTEMS, 2022, 12 (5-6) :149-160