Towards Scalable Kernel-Based Regularized System Identification

被引:0
|
作者
Chen, Lujing [1 ]
Chen, Tianshi [2 ,3 ]
Detha, Utkarsh [4 ]
Andersen, Martin S. [1 ]
机构
[1] Tech Univ Denmark, Dept Appl Math & Comp Sci, DK-2800 Lyngby, Denmark
[2] Chinese Univ Hong Kong, Sch Data Sci, Shenzhen 518172, Peoples R China
[3] Chinese Univ Hong Kong, Shenzhen Res Inst Big Data, Shenzhen 518172, Peoples R China
[4] MOSEK ApS, Fruebjergvej 3,Symbion Sci Pk, DK-2100 Copenhagen, Denmark
来源
2023 62ND IEEE CONFERENCE ON DECISION AND CONTROL, CDC | 2023年
基金
中国国家自然科学基金;
关键词
SIMPLEX-METHOD; MATRIX; ALGORITHM;
D O I
10.1109/CDC49753.2023.10384051
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper proposes a methodology for scalable kernel-based regularized system identification based on indirect methods. It leverages stochastic trace estimation methods and an iterative solver such as LSQR for the efficient evaluation of hyperparameter selection criteria. It also uses a derivative-free optimization approach to hyperparameter estimation, which avoids the need for computing gradients or Hessians of the objective function. Moreover, the method is matrix-free, which means it only relies on a matrix-vector oracle and exploits fast routines for various structured matrix-vector products. Our preliminary numerical experiments indicate that the methodology scales significantly better than direct methods, especially when dealing with large datasets and slowly decaying impulse responses.
引用
收藏
页码:1498 / 1504
页数:7
相关论文
共 50 条
  • [41] A Kernel-Based Multivariate Feature Selection Method for Microarray Data Classification
    Sun, Shiquan
    Peng, Qinke
    Shakoor, Adnan
    PLOS ONE, 2014, 9 (07):
  • [42] A review of approximate methods for kernel-based Big Media Data Analysis
    Iosifidis, Alexandros
    Tefas, Anastasios
    Pitas, Ioannis
    Gabbouj, Moncef
    2016 24TH EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO), 2016, : 1113 - 1117
  • [43] A kernel-based clustering method for gene selection with gene expression data
    Chen, Huihui
    Zhang, Yusen
    Gutman, Ivan
    JOURNAL OF BIOMEDICAL INFORMATICS, 2016, 62 : 12 - 20
  • [44] Kernel-based parameter estimation of dynamical systems with unknown observation functions
    Lindenbaum, Ofir
    Sagiv, Amir
    Mishne, Gal
    Talmon, Ronen
    CHAOS, 2021, 31 (04)
  • [45] Kernel-based fourth-order diffusion for image noise removal
    Yang, Yu-Qian
    Zhang, Cheng-Yi
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2015, 92 (01) : 181 - 191
  • [46] Conscience online learning: an efficient approach for robust kernel-based clustering
    Wang, Chang-Dong
    Lai, Jian-Huang
    Zhu, Jun-Yong
    KNOWLEDGE AND INFORMATION SYSTEMS, 2012, 31 (01) : 79 - 104
  • [47] Kernel-based fuzzy clustering and fuzzy clustering: A comparative experimental study
    Graves, Daniel
    Pedrycz, Witold
    FUZZY SETS AND SYSTEMS, 2010, 161 (04) : 522 - 543
  • [48] Kernel-Based Nonlinear Anomaly Detection via Union Dictionary for Hyperspectral Images
    Gao, Yenan
    Gu, Jiafeng
    Cheng, Tongkai
    Wang, Bin
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [49] Kernel-based hard clustering methods in the feature space with automatic variable weighting
    Ferreira, Marcelo R. P.
    de Carvalho, Francisco de A. T.
    PATTERN RECOGNITION, 2014, 47 (09) : 3082 - 3095
  • [50] The semiproximal SVM approach for multiple instance learning: a kernel-based computational study
    Avolio, Matteo
    Fuduli, Antonio
    OPTIMIZATION LETTERS, 2024, 18 (02) : 635 - 649