Towards Scalable Kernel-Based Regularized System Identification

被引:0
|
作者
Chen, Lujing [1 ]
Chen, Tianshi [2 ,3 ]
Detha, Utkarsh [4 ]
Andersen, Martin S. [1 ]
机构
[1] Tech Univ Denmark, Dept Appl Math & Comp Sci, DK-2800 Lyngby, Denmark
[2] Chinese Univ Hong Kong, Sch Data Sci, Shenzhen 518172, Peoples R China
[3] Chinese Univ Hong Kong, Shenzhen Res Inst Big Data, Shenzhen 518172, Peoples R China
[4] MOSEK ApS, Fruebjergvej 3,Symbion Sci Pk, DK-2100 Copenhagen, Denmark
基金
中国国家自然科学基金;
关键词
SIMPLEX-METHOD; MATRIX; ALGORITHM;
D O I
10.1109/CDC49753.2023.10384051
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper proposes a methodology for scalable kernel-based regularized system identification based on indirect methods. It leverages stochastic trace estimation methods and an iterative solver such as LSQR for the efficient evaluation of hyperparameter selection criteria. It also uses a derivative-free optimization approach to hyperparameter estimation, which avoids the need for computing gradients or Hessians of the objective function. Moreover, the method is matrix-free, which means it only relies on a matrix-vector oracle and exploits fast routines for various structured matrix-vector products. Our preliminary numerical experiments indicate that the methodology scales significantly better than direct methods, especially when dealing with large datasets and slowly decaying impulse responses.
引用
收藏
页码:1498 / 1504
页数:7
相关论文
共 50 条
  • [41] Regularized kernel-based Wiener filtering - Application to magnetoencephalographic signals denoising
    Constantin, I
    Richard, C
    Lengelle, R
    Soufflet, L
    2005 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOLS 1-5: SPEECH PROCESSING, 2005, : 289 - 292
  • [42] Kernel-Based Regularized Least Squares in R (KRLS) and Stata (krls)
    Ferwerda, Jeremy
    Hainmueller, Jens
    Hazlett, Chad J.
    JOURNAL OF STATISTICAL SOFTWARE, 2017, 79 (03): : 1 - 26
  • [43] Kernel-Based Regularized Learning with Random Projections: Beyond Least Squares
    Liu, Jiamin
    Gao, Junzhuo
    Lian, Heng
    SIAM JOURNAL ON MATHEMATICS OF DATA SCIENCE, 2025, 7 (01): : 253 - 273
  • [44] Kernel-based methods for Volterra series identification
    Libera, Alberto Dalla
    Carli, Ruggero
    Pillonetto, Gianluigi
    AUTOMATICA, 2021, 129
  • [45] Kernel-Based Models for System Analysis
    van Waarde, Henk J.
    Sepulchre, Rodolphe
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2023, 68 (09) : 5317 - 5332
  • [46] A New Kernel-Based Approach for NonlinearSystem Identification
    Pillonetto, Gianluigi
    Quang, Minh Ha
    Chiuso, Alessandro
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2011, 56 (12) : 2819 - 2847
  • [47] Input Design for Kernel-Based System Identification From the Viewpoint of Frequency Response
    Fujimoto, Yusuke
    Maruta, Ichiro
    Sugie, Toshiharu
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2018, 63 (09) : 3075 - 3082
  • [48] Kernel-based linear system identification: When does the representer theorem hold?
    Pillonetto, Gianluigi
    Bisiacco, Mauro
    AUTOMATICA, 2024, 159
  • [49] Electric load forecasting - Using Kernel-based modeling for nonlinear system identification
    Espinoza, Marcelo
    Suykens, Johan Ax
    Belmans, Ronnie
    De Moor, Bart
    IEEE CONTROL SYSTEMS MAGAZINE, 2007, 27 (05): : 43 - 57
  • [50] Learning linear modules in a dynamic network using regularized kernel-based methods
    Ramaswamy, Karthik Raghavan
    Bottegal, Giulio
    Van den Hof, Paul M. J.
    AUTOMATICA, 2021, 129