Towards Scalable Kernel-Based Regularized System Identification

被引:0
|
作者
Chen, Lujing [1 ]
Chen, Tianshi [2 ,3 ]
Detha, Utkarsh [4 ]
Andersen, Martin S. [1 ]
机构
[1] Tech Univ Denmark, Dept Appl Math & Comp Sci, DK-2800 Lyngby, Denmark
[2] Chinese Univ Hong Kong, Sch Data Sci, Shenzhen 518172, Peoples R China
[3] Chinese Univ Hong Kong, Shenzhen Res Inst Big Data, Shenzhen 518172, Peoples R China
[4] MOSEK ApS, Fruebjergvej 3,Symbion Sci Pk, DK-2100 Copenhagen, Denmark
基金
中国国家自然科学基金;
关键词
SIMPLEX-METHOD; MATRIX; ALGORITHM;
D O I
10.1109/CDC49753.2023.10384051
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper proposes a methodology for scalable kernel-based regularized system identification based on indirect methods. It leverages stochastic trace estimation methods and an iterative solver such as LSQR for the efficient evaluation of hyperparameter selection criteria. It also uses a derivative-free optimization approach to hyperparameter estimation, which avoids the need for computing gradients or Hessians of the objective function. Moreover, the method is matrix-free, which means it only relies on a matrix-vector oracle and exploits fast routines for various structured matrix-vector products. Our preliminary numerical experiments indicate that the methodology scales significantly better than direct methods, especially when dealing with large datasets and slowly decaying impulse responses.
引用
收藏
页码:1498 / 1504
页数:7
相关论文
共 50 条
  • [21] Scuba: scalable kernel-based gene prioritization
    Guido Zampieri
    Dinh Van Tran
    Michele Donini
    Nicolò Navarin
    Fabio Aiolli
    Alessandro Sperduti
    Giorgio Valle
    BMC Bioinformatics, 19
  • [22] Regularized Kernel-Based Reconstruction in Generalized Besov Spaces
    Michael Griebel
    Christian Rieger
    Barbara Zwicknagl
    Foundations of Computational Mathematics, 2018, 18 : 459 - 508
  • [23] Scuba: scalable kernel-based gene prioritization
    Zampieri, Guido
    Dinh Van Tran
    Donini, Michele
    Navarin, Nicolo
    Aiolli, Fabio
    Sperduti, Alessandro
    Valle, Giorgio
    BMC BIOINFORMATICS, 2018, 19
  • [24] Regularized Kernel-Based Reconstruction in Generalized Besov Spaces
    Griebel, Michael
    Rieger, Christian
    Zwicknagl, Barbara
    FOUNDATIONS OF COMPUTATIONAL MATHEMATICS, 2018, 18 (02) : 459 - 508
  • [25] A REGULARIZED KERNEL-BASED APPROACH TO UNSUPERVISED AUDIO SEGMENTATION
    Harchaoui, Zaid
    Vallet, Felicien
    Lung-Yut-Fong, Alexandre
    Cappe, Olivier
    2009 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOLS 1- 8, PROCEEDINGS, 2009, : 1665 - 1668
  • [26] A New Kernel-Based Algorithm for Cluster Sparse System Identification
    Senthil Murugan Boopalan
    Sundaravanan Jothiprakasam
    Transactions of the Indian National Academy of Engineering, 2024, 9 (1) : 225 - 239
  • [27] Robust EM kernel-based methods for linear system identification
    Bottegal, Giulio
    Aravkin, Aleksandr Y.
    Hjalmarsson, Hakan
    Pillonetto, Gianluigi
    AUTOMATICA, 2016, 67 : 114 - 126
  • [28] Kernel-based system identification with manifold regularization: A Bayesian perspective
    Mazzoleni, Mirko
    Chiuso, Alessandro
    Scandella, Matteo
    Formentin, Simone
    Previdi, Fabio
    AUTOMATICA, 2022, 142
  • [29] A comparison of manifold regularization approaches for kernel-based system identification
    Mazzoleni, M.
    Scandella, M.
    Previdi, F.
    IFAC PAPERSONLINE, 2019, 52 (29): : 180 - 185
  • [30] A new kernel-based approach to overparameterized Hammerstein system identification
    Risuleo, Riccardo S.
    Bottegal, Giulio
    Hjalmarsson, Hakan
    2015 54TH IEEE CONFERENCE ON DECISION AND CONTROL (CDC), 2015, : 115 - 120