Numerical and experimental study for a modified LPG cooking burner

被引:4
|
作者
Matthujak, Anirut [1 ]
Wichangarm, Mana [2 ]
Sriveerakul, Thanarath [1 ]
Sucharitpwatskul, Sedthawatt [3 ]
Phongthanapanich, Sutthisak [4 ]
机构
[1] Ubon Ratchathani Univ, Combust & Jet Applicat Res Lab CJARL, Fac Engn, Dept Mech Engn, Ubon Ratchathani 34190, Thailand
[2] Rajamangala Univ Technol Isan, Fac Tech Educ, Khon Kaen Campus, Khon Kaen 40000, Thailand
[3] Natl Met & Mat Technol Ctr MTEC, Design & Engn Res Unit, Comp Aided Engn Lab, 114 Thailand Sci Pk, Pathum Thani 12120, Thailand
[4] King Mongkuts Univ Technol North Bangkok, Dept Mech Engn Technol, Bangkok 10800, Thailand
关键词
LPG burners; New modification burner; CFD; Thermal efficiency; PERFORMANCE; EFFICIENCY; STOVE;
D O I
10.1016/j.jksus.2023.102752
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
A new modification of the LPG burner (NB-5) is proposed in this study. The modification combines the advantageous features that originated from three Thai commercial burners: KB-5, S-5, and EB-5. CFD techniques were used to investigate and prove the benefits each burner's features. Combining features increase the mixing intensity and primary aeration, generates a swirling central flame, reduces heat loss, and increases secondary aeration. These enhancements cause an increase in combustion temperature and flow velocity, which significantly improves the net heat flux of the NB-5. The simulation results indicated that the NB-5 produced the highest average temperature of 929.35 K, and the highest heat flux of 58.01 kW/m2. This leads directly to an enhancement in thermal efficiency. The new modification burner (NB-5) was built and tested experimentally based on CFD results. The NB-5 burner obtained significant improvements in thermal efficiency and a reduction in CO and NOx emissions over the three commercial burners. In comparison with the traditional KB-5 burner, it was found that the NB-5, EB-5, and S-5 burners provided average energy savings of 22.37%, 8.46%, and 1.69%, respectively. This study shows the benefit of utilizing the CFD simulations to assist in designing and modifying LPG burners. This allows manufacturers to design and optimize burners more effectively at a much lower cost than the traditional water boiling tests. (c) 2023 The Author(s). Published by Elsevier B.V. on behalf of King Saud University. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
引用
收藏
页数:10
相关论文
共 50 条
  • [21] Numerical and experimental study on a modified Savonius rotor with guide blades
    Kalluvila, Jinshah B. S.
    Sreejith, B.
    INTERNATIONAL JOURNAL OF GREEN ENERGY, 2018, 15 (12) : 744 - 757
  • [22] Numerical investigation of thermodynamic parameters for performance evaluation of cooking gas stove burner by appending of flame shield
    Dwivedi, Gaurav
    Gohil, Pankaj P.
    Behura, Arun Kumar
    MATERIALS TODAY-PROCEEDINGS, 2021, 46 : 5696 - 5702
  • [23] Performance Analysis of Novel Perforated LPG Burner for Domestic Application
    Hussien, Ahmed A.
    Qasem, Isam
    INTERNATIONAL JOURNAL OF HEAT AND TECHNOLOGY, 2024, 42 (02) : 481 - 489
  • [24] Experimental and Numerical Study of Swirling Diffusion Flame Provided by a Coaxial Burner: Effect of Inlet Velocity Ratio
    Chakchak, Sawssen
    Hidouri, Ammar
    Zaidaoui, Hajar
    Chrigui, Mouldi
    Boushaki, Toufik
    FLUIDS, 2021, 6 (04)
  • [25] Experimental and numerical investigation on performance of a porous medium burner with reciprocating flow
    Xie, Mao-Zhao
    Shi, Jun-Rui
    Deng, Yang-Bo
    Liu, Hong
    Zhou, Lei
    Xu, You-Ning
    FUEL, 2009, 88 (01) : 206 - 213
  • [26] Experimental and numerical study of using of LPG on characteristics of dual fuel diesel engine under variable compression ratio
    Mohsen, Maysaa J.
    Al-Dawody, Mohamed F.
    Jamshed, Wasim
    El Din, Sayed M.
    Abdalla, Nesreen Sirelkhtam Elmki
    Abd-Elmonem, Assmaa
    Iqbal, Amjad
    Shah, Hamad Hussain
    ARABIAN JOURNAL OF CHEMISTRY, 2023, 16 (08)
  • [27] Performance analysis of a biogas operated porous radiant burner for domestic cooking application
    Kaushik, Lav Kumar
    Mahalingam, Arun Kumar
    Palanisamy, Muthukumar
    ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH, 2021, 28 (10) : 12168 - 12177
  • [28] Thermal Efficiency of LPG and PNG-fired burners: Experimental and numerical studies
    Boggavarapu, Prasad
    Ray, Baidurja
    FUEL, 2014, 116 : 709 - 715
  • [29] Effect of fuel composition and EGR on spark-ignited engine combustion with LPG fueling: Experimental and numerical investigation
    Kar, Tanmay
    Fosudo, Toluwalase
    Marchese, Anthony
    Windom, Bret
    Olsen, Daniel
    FUEL, 2022, 327
  • [30] An Investigation of Rotary Cup Burner Assembly with Three Vehicle-Mounted Cooking Stoves by Numerical Evaluation Method
    Sheng, Yijian
    Liu, He
    He, Limo
    Xiang, Jun
    PROCESSES, 2022, 10 (02)