On the commutant of the principal subalgebra in the A1 lattice vertex algebra

被引:0
作者
Kawasetsu, Kazuya [1 ]
机构
[1] Kumamoto Univ, Prior Org Innovat & Excellence, Kumamoto 8608555, Japan
关键词
Vertex algebras; Coset construction; Principal subspaces; Lattice vertex algebras; Zhu's Poisson algebras; MODULAR INVARIANCE; CHARACTERS; REPRESENTATIONS; COMBINATORICS; SUBSPACES;
D O I
10.1007/s11005-023-01743-2
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The coset (commutant) construction is a fundamental tool to construct vertex operator algebras from known vertex operator algebras. The aim of this paper is to provide a fundamental example of the commutants of vertex algebras outside vertex operator algebras. Namely, the commutant C of the principal subalgebra W of the A(1) lattice vertex operator algebra V-A1 is investigated. An explicit minimal set of generators of C, which consists of infinitely many elements and strongly generates C, is introduced. It implies that the algebra C is not finitely generated. Furthermore, Zhu's Poisson algebra of C is shown to be isomorphic to an infinite-dimensional algebra C[x(1),x(2),& mldr;]/(x(i)x(j)|i,j=1,2,& mldr;). In particular, the associated variety of C consists of a point. Moreover, W and C are verified to form a dual pair in V-A1.
引用
收藏
页数:18
相关论文
共 23 条
[1]  
[Anonymous], 1993, PROG MATH
[2]  
Arakawa T., 2018, Progr. Math., V326, P41
[3]   A question of Joseph Ritt from the point of view of vertex algebras [J].
Arakawa, Tomoyuki ;
Kawasetsu, Kazuya ;
Sebag, Julien .
JOURNAL OF ALGEBRA, 2021, 588 :118-128
[4]   A remark on the C 2-cofiniteness condition on vertex algebras [J].
Arakawa, Tomoyuki .
MATHEMATISCHE ZEITSCHRIFT, 2012, 270 (1-2) :559-575
[5]   Fermionic characters and arbitrary highest-weight integrable (sl)over-capr+1-modules [J].
Ardonne, E ;
Kedem, R ;
Stone, M .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2006, 264 (02) :427-464
[6]   Coupling of Two Conformal Field Theories and Nakajima-Yoshioka Blow-Up Equations [J].
Bershtein, Mikhail ;
Feigin, Boris ;
Litvinov, Alexei .
LETTERS IN MATHEMATICAL PHYSICS, 2016, 106 (01) :29-56
[7]   Parafermionic bases of standard modules for affine Lie algebras [J].
Butorac, Marijana ;
Kozic, Slaven ;
Primc, Mirko .
MATHEMATISCHE ZEITSCHRIFT, 2021, 298 (3-4) :1003-1032
[8]   Vertex-algebraic structure of the principal subspaces of certain A1(1)-modules, I:: Level one case [J].
Calinescu, C. ;
Lepowsky, J. ;
Milas, A. .
INTERNATIONAL JOURNAL OF MATHEMATICS, 2008, 19 (01) :71-92
[9]   The Rogers-Ramanujan recursion and intertwining operators [J].
Capparelli, S ;
Lepowsky, J ;
Milas, A .
COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2003, 5 (06) :947-966
[10]   A recurrence relation for characters of highest weight integrable modules for affine Lie algebras [J].
Cook, William J. ;
Li, Haisheng ;
Misra, Kailash C. .
COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2007, 9 (02) :121-133