Med-cDiff: Conditional Medical Image Generation with Diffusion Models

被引:17
作者
Hung, Alex Ling Yu [1 ,2 ]
Zhao, Kai [2 ]
Zheng, Haoxin [1 ,2 ]
Yan, Ran [2 ,3 ]
Raman, Steven S. [2 ]
Terzopoulos, Demetri [1 ,4 ]
Sung, Kyunghyun [2 ]
机构
[1] Univ Calif Los Angeles, Comp Sci Dept, Los Angeles, CA 90095 USA
[2] Univ Calif Los Angeles, Dept Radiol, Los Angeles, CA 90095 USA
[3] Univ Calif Los Angeles, Bioengn Dept, Los Angeles, CA 90095 USA
[4] VoxelCloud Inc, Los Angeles, CA 90024 USA
来源
BIOENGINEERING-BASEL | 2023年 / 10卷 / 11期
基金
美国国家卫生研究院;
关键词
image generation; diffusion models; generative models; super-resolution; denoising; inpainting;
D O I
10.3390/bioengineering10111258
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Conditional image generation plays a vital role in medical image analysis as it is effective in tasks such as super-resolution, denoising, and inpainting, among others. Diffusion models have been shown to perform at a state-of-the-art level in natural image generation, but they have not been thoroughly studied in medical image generation with specific conditions. Moreover, current medical image generation models have their own problems, limiting their usage in various medical image generation tasks. In this paper, we introduce the use of conditional Denoising Diffusion Probabilistic Models (cDDPMs) for medical image generation, which achieve state-of-the-art performance on several medical image generation tasks.
引用
收藏
页数:13
相关论文
共 70 条
[1]   The Role of Generative Adversarial Network in Medical Image Analysis: An In-depth Survey [J].
Alamir, Manal ;
Alghamdi, Manal .
ACM COMPUTING SURVEYS, 2023, 55 (05)
[2]   Generating Synthetic Images for Healthcare with Novel Deep Pix2Pix GAN [J].
Aljohani, Abeer ;
Alharbe, Nawaf .
ELECTRONICS, 2022, 11 (21)
[3]   MedGAN: Medical image translation using GANs [J].
Armanious, Karim ;
Jiang, Chenming ;
Fischer, Marc ;
Kuestner, Thomas ;
Nikolaou, Konstantin ;
Gatidis, Sergios ;
Yang, Bin .
COMPUTERIZED MEDICAL IMAGING AND GRAPHICS, 2020, 79
[4]  
Behrendt F, 2023, Arxiv, DOI arXiv:2303.03758
[5]   Harmonizing Flows: Unsupervised MR Harmonization Based on Normalizing Flows [J].
Beizaee, Farzad ;
Desrosiers, Christian ;
Lodygensky, Gregory A. ;
Dolz, Jose .
INFORMATION PROCESSING IN MEDICAL IMAGING, IPMI 2023, 2023, 13939 :347-359
[6]  
Cao CT, 2024, Arxiv, DOI [arXiv:2208.05481, 10.48550/arXiv.2208.05481]
[7]   Attri-VAE: Attribute-based interpretable representations of medical images with variational autoencoders [J].
Cetin, Irem ;
Stephens, Maialen ;
Camara, Oscar ;
Ballester, Miguel A. Gonzalez .
COMPUTERIZED MEDICAL IMAGING AND GRAPHICS, 2023, 104
[8]  
Chen T, 2023, Arxiv, DOI arXiv:2304.04429
[9]   MR Image Denoising and Super-Resolution Using Regularized Reverse Diffusion [J].
Chung, Hyungjin ;
Lee, Eun Sun ;
Ye, Jong Chul .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2023, 42 (04) :922-934
[10]   Score-based diffusion models for accelerated MRI [J].
Chung, Hyungjin ;
Ye, Jong Chul .
MEDICAL IMAGE ANALYSIS, 2022, 80