An oncolytic virus-delivered TGFβ inhibitor overcomes the immunosuppressive tumor microenvironment

被引:17
作者
Depeaux, Kristin [1 ]
Rivadeneira, Dayana B. [1 ]
Lontos, Konstantinos [2 ]
Dean, Victoria G. [1 ]
Gunn, William G. [1 ]
Watson, McLane J. [3 ]
Yao, Tianhong [1 ]
Wilfahrt, Drew [1 ]
Hinck, Cynthia [4 ]
Wieteska, Lukasz [4 ]
Thorne, Stephen H. [5 ]
Hinck, Andrew P. [4 ]
Delgoffe, Greg M. [1 ]
机构
[1] Univ Pittsburgh, Dept Immunol, Sch Med, Pittsburgh, PA 15260 USA
[2] Univ Texas MD Anderson Canc Ctr, Stem Cell Transplantat & Cellular Therapy Ctr, Houston, TX USA
[3] Van Andel Inst, Dept Metab & Nutr Programming, Grand Rapids, MI USA
[4] Univ Pittsburgh, Dept Struct Biol, Sch Med, Pittsburgh, PA USA
[5] Kalivir Immunotherapeut, Pittsburgh, PA USA
基金
美国国家卫生研究院;
关键词
REGULATORY T-CELLS; GROWTH; EXPRESSION; MODELS; GAMMA;
D O I
10.1084/jem.20230053
中图分类号
R392 [医学免疫学]; Q939.91 [免疫学];
学科分类号
100102 ;
摘要
Oncolytic viruses induce tumor lysis and inflame the tumor microenvironment but do not relieve immunosuppressive signals. Engineering oncolytic vaccinia virus to express a potent TGF beta R inhibitor results in local neutralization of TGF beta, increased Treg cell fragility, and superior therapeutic response. While checkpoint blockade immunotherapies have widespread success, they rely on a responsive immune infiltrate; as such, treatments enhancing immune infiltration and preventing immunosuppression are of critical need. We previously generated alpha PD-1 resistant variants of the murine HNSCC model MEER. While entirely alpha PD-1 resistant, these tumors regress after single dose of oncolytic vaccinia virus (VV). We then generated a VV-resistant MEER line to dissect the immunologic features of sensitive and resistant tumors. While treatment of both tumor types induced immune infiltration and IFN gamma, we found a defining feature of resistance was elevation of immunosuppressive cytokines like TGF beta, which blunted IFN gamma signaling, especially in regulatory T cells. We engineered VV to express a genetically encoded TGF beta RII inhibitor. Inhibitor-expressing VV produced regressions in resistant tumor models and showed impressive synergy with checkpoint blockade. Importantly, tumor-specific, viral delivery of TGF beta inhibition had no toxicities associated with systemic TGF beta/TGF beta R inhibition. Our data suggest that aside from stimulating immune infiltration, oncolytic viruses are attractive means to deliver agents to limit immunosuppression in cancer.
引用
收藏
页数:24
相关论文
共 49 条
[11]   TGF-β induces Foxp3+T-regulatory cells from CD4+CD25-precursors [J].
Fu, S ;
Zhang, N ;
Yopp, AC ;
Chen, DM ;
Mao, MW ;
Chen, D ;
Zhang, HJ ;
Ding, YZ ;
Bromberg, JS .
AMERICAN JOURNAL OF TRANSPLANTATION, 2004, 4 (10) :1614-1627
[12]   Successful Anti-PD-1 Cancer Immunotherapy Requires T Cell-Dendritic Cell Crosstalk Involving the Cytokines IFN-γ and IL-12 [J].
Garris, Christopher S. ;
Arlauckas, Sean P. ;
Kohler, Rainer H. ;
Trefny, Marcel P. ;
Garren, Seth ;
Piot, Cecile ;
Engblom, Camilla ;
Pfirschke, Christina ;
Siwicki, Marie ;
Gungabeesoon, Jeremy ;
Freeman, Gordon J. ;
Warren, Sarah E. ;
Ong, Sufey ;
Browning, Erica ;
Twitty, Christopher G. ;
Pierce, Robert H. ;
Le, Mai H. ;
Algazi, Alain P. ;
Daud, Adil I. ;
Pai, Sara I. ;
Zippelius, Alfred ;
Weissleder, Ralph ;
Pittet, Mikael J. .
IMMUNITY, 2018, 49 (06) :1148-+
[13]   Neuropilin-1 is a receptor for transforming growth factor β-1, activates its latent form, and promotes regulatory T cell activity [J].
Glinka, Yelena ;
Prud'homme, Gerald J. .
JOURNAL OF LEUKOCYTE BIOLOGY, 2008, 84 (01) :302-310
[14]  
Gogas HJ., 2021, Ann. Oncol, V32, pS867, DOI [10.1016/annonc/annonc706, DOI 10.1016/ANNONC/ANNONC706]
[15]   Talimogene Laherparepvec and Pembrolizumab in Recurrent or Metastatic Squamous Cell Carcinoma of the Head and Neck (MASTERKEY-232): A Multicenter, Phase 1b Study [J].
Harrington, Kevin J. ;
Kong, Anthony ;
Mach, Nicolas ;
Chesney, Jason A. ;
Fernandez, Beatriz Castelo ;
Rischin, Danny ;
Cohen, Ezra E. W. ;
Radcliffe, Hoi-Shen ;
Gumuscu, Burak ;
Cheng, Jonathan ;
Snyder, Wendy ;
Siu, Lillian L. .
CLINICAL CANCER RESEARCH, 2020, 26 (19) :5153-5161
[16]   The role of human papillomavirus 16 E6 in anchorage-independent and invasive growth of mouse tonsil epithelium [J].
Hoover, Andrew C. ;
Spanos, William C. ;
Harris, George F. ;
Anderson, Mary E. ;
Klingelhutz, Aloysius J. ;
Lee, John H. .
ARCHIVES OF OTOLARYNGOLOGY-HEAD & NECK SURGERY, 2007, 133 (05) :495-502
[17]   TGF-β Inhibition Improves Oncolytic Herpes Viroimmunotherapy in Murine Models of Rhabdomyosarcoma [J].
Hutzen, Brian ;
Chen, Chun-Yu ;
Wang, Pin-Yi ;
Sprague, Les ;
Swain, Hayley M. ;
Love, Julia ;
Conner, Joe ;
Boon, Louis ;
Cripe, Timothy P. .
MOLECULAR THERAPY-ONCOLYTICS, 2017, 7 :17-26
[18]   Oncolytic Viruses and Immune Checkpoint Inhibitors: Preclinical Developments to Clinical Trials [J].
Hwang, June Kyu ;
Hong, JinWoo ;
Yun, Chae-Ok .
INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2020, 21 (22) :1-26
[19]   Reciprocal cellular cross-talk within the tumor microenvironment promotes oncolytic virus activity [J].
Ilkow, Carolina S. ;
Marguerie, Monique ;
Batenchuk, Cory ;
Mayer, Justin ;
Ben Neriah, Daniela ;
Cousineau, Sophie ;
Falls, Theresa ;
Jennings, Victoria A. ;
Boileau, Meaghan ;
Bellamy, David ;
Bastin, Donald ;
de Souza, Christiano Tanese ;
Alkayyal, Almohanad ;
Zhang, Jiqing ;
Le Boeuf, Fabrice ;
Arulanandam, Rozanne ;
Stubbert, Lawton ;
Sampath, Padma ;
Thorne, Steve H. ;
Paramanthan, Piriya ;
Chatterjee, Avijit ;
Strieter, Robert M. ;
Burdick, Marie ;
Addison, Christina L. ;
Stojdl, David F. ;
Atkins, Harold L. ;
Auer, Rebecca C. ;
Diallo, Jean-Simon ;
Lichty, Brian D. ;
Bell, John C. .
NATURE MEDICINE, 2015, 21 (05) :530-U168
[20]   Oncolytic Vaccinia Virus Augments T Cell Factor 1-Positive Stem-like CD8+ T Cells, Which Underlies the Efficacy of Anti-PD-1 Combination Immunotherapy [J].
Jeon, Yun-Hui ;
Lee, Namhee ;
Yoo, Jiyoon ;
Won, Solchan ;
Shin, Suk-kyung ;
Kim, Kyu-Hwan ;
Park, Jun-Gyu ;
Kim, Min-Gang ;
Kim, Hang-Rae ;
Oh, Keunhee ;
Lee, Dong-Sup .
BIOMEDICINES, 2022, 10 (04)