CAR-T in the Treatment of Acute Myeloid Leukemia: Barriers and How to Overcome Them

被引:16
作者
Vanhooren, Jolien [1 ,2 ,3 ]
Dobbelaere, Rani [1 ]
Derpoorter, Charlotte [1 ,2 ,3 ]
Deneweth, Larissa [2 ,3 ]
Van Camp, Laurens [1 ,2 ,3 ]
Uyttebroeck, Anne [4 ]
De Moerloose, Barbara [1 ,2 ,3 ]
Lammens, Tim [1 ,2 ,3 ]
机构
[1] Univ Ghent, Dept Internal Med & Pediat, Ghent, Belgium
[2] Ghent Univ Hosp, Dept Pediat Hematol Oncol & Stem Cell Transplantat, Ghent, Belgium
[3] Canc Res Inst Ghent, Ghent, Belgium
[4] Katholieke Univ Leuven, Univ Hosp Leuven, Dept Pediat Hematol & Oncol, Dept Oncol, Leuven, Belgium
来源
HEMASPHERE | 2023年 / 7卷 / 09期
关键词
CHIMERIC ANTIGEN RECEPTOR; CELL IMMUNOTHERAPY; THERAPY; EXPRESSION; RELEASE; AML; IDENTIFICATION; CYTOTOXICITY; PROGNOSIS; BLASTS;
D O I
10.1097/HS9.0000000000000937
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Conventional therapies for acute myeloid leukemia (AML) are characterized by high rates of relapse, severe toxicities, and poor overall survival rates. Thus, the development of new therapeutic strategies is crucial for improving the survival and quality of life of AML patients. CD19-directed chimeric antigen receptor (CAR) T-cell immunotherapy has been extremely successful in the treatment of B-cell acute lymphoid leukemia and several mature B-cell lymphomas. However, the use of CAR T-cell therapy for AML is currently prevented due to the lack of a myeloid equivalent to CD19, as currently known cell surface targets on leukemic blasts are also expressed on healthy hematopoietic stem and progenitor cells as well as their progeny. In addition, the immunosuppressive tumor microenvironment has a dampening effect on the antitumor activity of CAR-T cells. Here, we review the therapeutic challenges limiting the use of CAR T-cell therapy for AML and discuss promising novel strategies to overcome them.
引用
收藏
页数:10
相关论文
共 94 条
[21]   Metabolic engineering against the arginine microenvironment enhances CAR-T cell proliferation and therapeutic activity [J].
Fultang, Livingstone ;
Booth, Sarah ;
Yogev, Orli ;
da Costa, Barbara Martins ;
Tubb, Vanessa ;
Panetti, Silvia ;
Stavrou, Victoria ;
Scarpa, Ugo ;
Jankevics, Andris ;
Lloyd, Gavin ;
Southam, Andrew ;
Lee, Steven P. ;
Dunn, Warwick B. ;
Chesler, Louis ;
Mussai, Francis ;
De Santo, Carmela .
BLOOD, 2020, 136 (10) :1155-1160
[22]   Preemptive mitigation of CD19 CAR T-cell cytokine release syndrome without attenuation of antileukemic efficacy [J].
Gardner, Rebecca A. ;
Ceppi, Francesco ;
Rivers, Julie ;
Annesley, Colleen ;
Summers, Corinne ;
Taraseviciute, Agne ;
Gust, Juliane ;
Leger, Kasey J. ;
Tarlock, Katherine ;
Cooper, Todd M. ;
Finney, Olivia C. ;
Brakke, Hannah ;
Li, Daniel H. ;
Park, Julie R. ;
Jensen, Michael C. .
BLOOD, 2019, 134 (24) :2149-2158
[23]   Design and Production An Effective Bispecific Tandem Chimeric Antigen Receptor on T Cells against CD123 and Folate Receptor β towards B-Acute Myeloid Leukaemia Blasts [J].
Ghamari, Ali ;
Pakzad, Parviz ;
Majd, Ahmad ;
Ebrahimi, Marzieh ;
Hamidieh, Amir Ali .
CELL JOURNAL, 2021, 23 (06) :650-657
[24]   Mutated regions of nucleophosmin 1 elicit both CD4+ and CD8+ T-cell responses in patients with acute myeloid leukemia [J].
Greiner, Jochen ;
Ono, Yoko ;
Hofmann, Susanne ;
Schmitt, Anita ;
Mehring, Elmar ;
Goetz, Marlies ;
Guillaume, Philippe ;
Doehner, Konstanze ;
Mytilineos, Joannis ;
Doehner, Hartmut ;
Schmitt, Michael .
BLOOD, 2012, 120 (06) :1282-1289
[25]   Leukaemic stem cell load at diagnosis predicts the development of relapse in young acute myeloid leukaemia patients [J].
Hanekamp, Diana ;
Denys, Barbara ;
Kaspers, Gertjan J. L. ;
te Marvelde, Jeroen G. ;
Schuurhuis, Gerrit Jan ;
De Haas, Valerie ;
De Moerloose, Barbara ;
de Bont, Eveline S. ;
Zwaan, C. Michel ;
de Jong, Anja ;
Depreter, Barbara ;
Lammens, Tim ;
Philippe, Jan ;
Cloos, Jacqueline ;
van der Velden, Vincent H. J. .
BRITISH JOURNAL OF HAEMATOLOGY, 2018, 183 (03) :512-516
[26]   Nanobody Based Tri-Specific Chimeric Antigen Receptor to Treat Acute Myeloid Leukaemia [J].
Hazelton, Warren ;
Ghorashian, Sara ;
Pule, Martin .
BLOOD, 2020, 136
[27]   Bispecific and split CAR T cells targeting CD13 and TIM3 eradicate acute myeloid leukemia [J].
He, Xin ;
Feng, Zijie ;
Ma, Jian ;
Ling, Sunbin ;
Cao, Yan ;
Gurung, Buddha ;
Wu, Yuan ;
Katona, Bryson W. ;
O'Dwyer, Kienan P. ;
Siegel, Don L. ;
June, Carl H. ;
Hua, Xianxin .
BLOOD, 2020, 135 (10) :713-723
[28]   Health Economic Aspects of Chimeric Antigen Receptor T-cell Therapies for Hematological Cancers: Present and Future [J].
Heine, Renaud ;
Thielen, Frederick W. ;
Koopmanschap, Marc ;
Kersten, Marie Jose ;
Einsele, Hermann ;
Jaeger, Ulrich ;
Sonneveld, Pieter ;
Sierra, Jorge ;
Smand, Carin ;
Uyl-de Groot, Carin A. .
HEMASPHERE, 2021, 5 (02)
[29]   Identification of Neurotoxicity after Chimeric Antigen Receptor (CAR) T Cell Infusion without Deterioration in the Immune Effector Cell Encephalopathy (ICE) Score [J].
Herr, Megan M. ;
Chen, George L. ;
Ross, Maureen ;
Jacobson, Hillary ;
McKenzie, Renee ;
Markel, Laura ;
Balderman, Sophia R. ;
Ho, Christine M. ;
Hahn, Theresa ;
McCarthy, Philip L. .
BIOLOGY OF BLOOD AND MARROW TRANSPLANTATION, 2020, 26 (11) :E271-E274
[30]   Recent advances in CAR-T cell engineering [J].
Huang, Ruihao ;
Li, Xiaoping ;
He, Yundi ;
Zhu, Wen ;
Gao, Lei ;
Liu, Yao ;
Gao, Li ;
Wen, Qin ;
Zhong, Jiang F. ;
Zhang, Cheng ;
Zhang, Xi .
JOURNAL OF HEMATOLOGY & ONCOLOGY, 2020, 13 (01)