Artificial intelligence for molecular communication

被引:0
作者
Bartunik, Max [2 ]
Kirchner, Jens [2 ]
Keszocze, Oliver [1 ]
机构
[1] Friedrich Alexander Univ Erlangen Nurnberg FAU, Hardware Software Codesign, Erlangen, Germany
[2] Friedrich Alexander Univ Erlangen Nurnberg FAU, Lehrstuhl Tech Elekt, Erlangen, Germany
来源
IT-INFORMATION TECHNOLOGY | 2023年 / 65卷 / 4-5期
关键词
convolutional neural network; demodulation; molecular communication; DESIGN;
D O I
10.1515/itit-2023-0029
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Molecular communication is a novel approach for data transmission between miniaturised devices, especially in contexts where electrical signals are to be avoided. The communication is based on sending molecules (or other particles) at nanoscale through a typically fluid channel instead of the "classical" approach of sending electrons over a wire. Molecular communication devices have a large potential in future medical applications as they offer an alternative to antenna-based transmission systems that may not be applicable due to size, temperature, or radiation constraints. The communication is achieved by transforming a digital signal into concentrations of molecules that represent the signal. These molecules are then detected at the other end of the communication channel and transformed back into a digital signal. Accurately modeling the transmission channel is often not possible which may be due to a lack of data or time-varying parameters of the channel (e.g., the movements of a person wearing a medical device). This makes the process of demodulating the signal (i.e., signal classification) very difficult. Many approaches for demodulation have been discussed in the literature with one particular approach having tremendous success - artificial neural networks. These artificial networks imitate the decision process in the human brain and are capable of reliably classifying even rather noisy input data. Training such a network relies on a large set of training data. As molecular communication as a technology is still in its early development phase, this data is not always readily available. In this paper, we discuss neural network-based demodulation approaches relying on synthetic simulation data based on theoretical channel models as well as works that base their network on actual measurements produced by a prototype test bed. In this work, we give a general overview over the field molecular communication, discuss the challenges in the demodulations process of transmitted signals, and present approaches to these challenges that are based on artificial neural networks.
引用
收藏
页码:155 / 163
页数:9
相关论文
共 30 条
  • [1] Andrews L. C., 1998, SPECIAL FUNCTIONS MA, P479
  • [2] [Anonymous], 2018, 2018 15 INT S WIR CO, DOI [DOI 10.1109/ISWCS.2018.8491088, 10.1109/ISWCS.2018.8491088]
  • [3] Bartunik Max, 2020, Body Area Networks. Smart IoT and Big Data for Intelligent Health. 15th EAI International Conference, BODYNETS 2020. Proceedings. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering (LNICST 330), P92, DOI 10.1007/978-3-030-64991-3_7
  • [4] Bartunik Max, 2020, Bio-inspired Information and Communication Technologies. 12th EAI International Conference, BICT 2020. Proceedings. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering (LNICST 329), P303, DOI 10.1007/978-3-030-57115-3_27
  • [5] Bartunik M., 2023, IEEE T MOL BIO MULT, P1
  • [6] Bartunik M., 2022, WORKSH MOL COMM
  • [7] Bartunik M., 2022, INT S MED INF COMM T
  • [8] Choonsup Lee, 2017, 2017 42nd International Conference on Infrared, Millimeter and Terahertz Waves (IRMMW-THz), DOI 10.1109/IRMMW-THz.2017.8066916
  • [9] Investigation of Multiple Fluorescent Dyes in Macroscopic Air-Based Molecular Communication
    Damrath, Martin
    Bhattacharjee, Sunasheer
    Hoeher, Peter Adam
    [J]. IEEE TRANSACTIONS ON MOLECULAR BIOLOGICAL AND MULTI-SCALE COMMUNICATIONS, 2021, 7 (02): : 78 - 82
  • [10] Deng L, 2013, INT CONF ACOUST SPEE, P8604, DOI 10.1109/ICASSP.2013.6639345