Superlithiophilic, Ultrastable, and Ionic-Conductive Interface Enabled Long Lifespan All-Solid-State Lithium-Metal Batteries under High Mass Loading

被引:25
作者
Lu, Guanjie [1 ]
Liu, Wei [1 ,4 ]
Yang, Zuguang [1 ]
Wang, Yumei [1 ,5 ]
Zheng, Weikang [2 ]
Deng, Rongrui [2 ,3 ]
Wang, Ronghua [2 ]
Lu, Li [5 ]
Xu, Chaohe [1 ,3 ]
机构
[1] Chongqing Univ, Coll Aerosp Engn, Chongqing 400044, Peoples R China
[2] Chongqing Univ, Coll Mat Sci & Engn, Chongqing 400044, Peoples R China
[3] Chongqing Univ, Natl Engn Res Ctr Magnesium Alloys, Chongqing 400044, Peoples R China
[4] Nanjing Univ Sci & Technol, Sch Mat Sci & Engn, Nanjing 210094, Peoples R China
[5] Natl Univ Singapore, Chongqing Res Inst, Chongqing 401123, Peoples R China
基金
中国国家自然科学基金;
关键词
AlF3; all-solid-state lithium batteries; interface engineering; interfacial resistance; solid-state interface; IN-SITU FORMATION; DENDRITE-FREE; SURFACE-CHEMISTRY; STABILITY; PHASE; ANODE; AIR;
D O I
10.1002/adfm.202304407
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Garnet-type Li6.4La3Zr1.4Ta0.6O12 (LLZTO) suffers from instability against moist air, poor interfacial contact with anode, and serious dendrite issue, which greatly impede its practical application in all-solid-state lithium batteries (ASSLBs). Herein, a superlithiophilic, moisture-resistant, and robust interlayer is demonstrated to overcome these obstacles by in situ forming an AlF3 interlayer on the LLZTO surface. Thanks to the unique property, the AlF3-modified LLZTO offers a significantly reduced interfacial resistance by more than two orders of magnitude (from 527.5 & omega; cm(2) for the pristine Li/LLZTO to 1.3 & omega; cm(2) for the surface-engineered interface), achieves a critical current density of 1.2 mA cm(-2) and long-term stability of over 4000-4700 h, and endows regulated Li plating/stripping behaviors. Specifically, ASSLBs coupled with LiFePO4 and LiNi0.8Co0.1Mn0.1O2 (NCM811) cathodes can stably charge/discharge over 400 and 100 cycles at 0.5 and 0.2 C at 25 & DEG;C, with retentions of >80.0% and Coulombic efficiencies of >99.9%, respectively. Particularly, the NCM811-based full ASSLB with large mass loading of 8.3 mg cm(-2) also delivers a discharge-specific capacity as high as 199.1 mAh g(-1) with good rate capability, even approaching to the liquid cells. This study demonstrates a practical solution to address the interfacial challenges and paves the way for practical progress of ASSLBs.
引用
收藏
页数:13
相关论文
共 75 条
  • [11] Toward garnet electrolyte-based Li metal batteries: An ultrathin, highly effective, artificial solid-state electrolyte/metallic Li interface
    Fu, Kun
    Gong, Yunhui
    Liu, Boyang
    Zhu, Yizhou
    Xu, Shaomao
    Yao, Yonggang
    Luo, Wei
    Wang, Chengwei
    Lacey, Steven D.
    Dai, Jiaqi
    Chen, Yanan
    Mo, Yifei
    Wachsman, Eric
    Hu, Liangbing
    [J]. SCIENCE ADVANCES, 2017, 3 (04):
  • [12] A Plastic-Crystal Electrolyte Interphase for All-Solid-State Sodium Batteries
    Gao, Hongcai
    Xue, Leigang
    Xin, Sen
    Park, Kyusung
    Goodenough, John B.
    [J]. ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2017, 56 (20) : 5541 - 5545
  • [13] Coordination-Assisted Precise Construction of Metal Oxide Nanofilms for High-Performance Solid-State Batteries
    Guo, Sijie
    Li, Yutao
    Li, Bing
    Grundish, Nicholas S.
    Cao, An-Min
    Sun, Yong-Gang
    Xu, Yan-Song
    Ji, Yanglimin
    Qiao, Yan
    Zhang, Qinghua
    Meng, Fan-Qi
    Zhao, Zhi-Hao
    Wang, Dong
    Zhang, Xing
    Gu, Lin
    Yu, Xiqian
    Wan, Li-Jun
    [J]. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2022, 144 (05) : 2179 - 2188
  • [14] Solid-state lithium batteries: Safety and prospects
    Guo, Yong
    Wu, Shichao
    He, Yan-Bing
    Kang, Feiyu
    Chen, Liquan
    Li, Hong
    Yang, Quan-Hong
    [J]. ESCIENCE, 2022, 2 (02): : 138 - 163
  • [15] In-situ formation of a nanoscale lithium aluminum alloy in lithium metal for high-load battery anode
    Han, Shuanghui
    Li, Zhenbang
    Zhang, Yuji
    Lei, Danni
    Wang, Chengxin
    [J]. ENERGY STORAGE MATERIALS, 2022, 48 : 384 - 392
  • [16] Constructing Multifunctional Interphase between Li1.4Al0.4Ti1.6(PO4)3 and Li Metal by Magnetron Sputtering for Highly Stable Solid-State Lithium Metal Batteries
    Hao, Xiaoge
    Zhao, Qiang
    Su, Shiming
    Zhang, Shiqi
    Ma, Jiabin
    Shen, Lu
    Yu, Qipeng
    Zhao, Liang
    Liu, Yong
    Kang, Feiyu
    He, Yon-Bing
    [J]. ADVANCED ENERGY MATERIALS, 2019, 9 (34)
  • [17] Tuning Interface Lithiophobicity for Lithium Metal Solid-State Batteries
    He, Xinzi
    Ji, Xiao
    Zhang, Bao
    Rodrigo, Nuwanthi D.
    Hou, Singyuk
    Gaskell, Karen
    Deng, Tao
    Wan, Hongli
    Liu, Sufu
    Xu, Jijian
    Nan, Bo
    Lucht, Brett L.
    Wang, Chunsheng
    [J]. ACS ENERGY LETTERS, 2022, 7 (01): : 131 - 139
  • [18] An artificial hybrid interphase for an ultrahigh-rate and practical lithium metal anode
    Hu, Anjun
    Chen, Wei
    Du, Xinchuan
    Hu, Yin
    Lei, Tianyu
    Wang, Hongbo
    Xue, Lanxin
    Li, Yaoyao
    Sun, He
    Yan, Yichao
    Long, Jianping
    Shu, Chaozhu
    Zhu, Jun
    Li, Baihai
    Wang, Xianfu
    Xiong, Jie
    [J]. ENERGY & ENVIRONMENTAL SCIENCE, 2021, 14 (07) : 4115 - 4124
  • [19] Origin of the electrocatalytic oxygen evolution activity of nickel phosphides: in-situ electrochemical oxidation and Cr doping to achieve high performance
    Hu, Xiaolin
    Luo, Gan
    Guo, Xiaolong
    Zhao, Qiannan
    Wang, Ronghua
    Huang, Guangsheng
    Jiang, Bin
    Xu, Chaohe
    Pan, Fusheng
    [J]. SCIENCE BULLETIN, 2021, 66 (07) : 708 - 719
  • [20] Ru Single Atoms on N-Doped Carbon by Spatial Confinement and Ionic Substitution Strategies for High-Performance Li-O2 Batteries
    Hu, Xiaolin
    Luo, Gan
    Zhao, Qiannan
    Wu, Dan
    Yang, Tongxin
    Wen, Jie
    Wang, Ronghua
    Xu, Chaohe
    Hu, Ning
    [J]. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2020, 142 (39) : 16776 - 16786