Parking Time Violation Tracking Using YOLOv8 and Tracking Algorithms

被引:21
|
作者
Sharma, Nabin [1 ]
Baral, Sushish [1 ]
Paing, May Phu [2 ]
Chawuthai, Rathachai [3 ]
机构
[1] King Mongkuts Inst Technol Ladkrabang, Sch Engn, Dept Robot & AI, Bangkok 10520, Thailand
[2] King Mongkuts Inst Technol Ladkrabang, Sch Engn, Dept Biomed Engn, Bangkok 10520, Thailand
[3] King Mongkuts Inst Technol Ladkrabang, Sch Engn, Dept Comp Engn, Bangkok 10520, Thailand
关键词
DeepSORT; OC-SORT; object detection; tracking algorithm; vehicle tracking; YOLOv8; MODEL;
D O I
10.3390/s23135843
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
The major problem in Thailand related to parking is time violation. Vehicles are not allowed to park for more than a specified amount of time. Implementation of closed-circuit television (CCTV) surveillance cameras along with human labor is the present remedy. However, this paper presents an approach that can introduce a low-cost time violation tracking system using CCTV, Deep Learning models, and object tracking algorithms. This approach is fairly new because of its appliance of the SOTA detection technique, object tracking approach, and time boundary implementations. YOLOv8, along with the DeepSORT/OC-SORT algorithm, is utilized for the detection and tracking that allows us to set a timer and track the time violation. Using the same apparatus along with Deep Learning models and algorithms has produced a better system with better performance. The performance of both tracking algorithms was well depicted in the results, obtaining MOTA scores of (1.0, 1.0, 0.96, 0.90) and (1, 0.76, 0.90, 0.83) in four different surveillance data for DeepSORT and OC-SORT, respectively.
引用
收藏
页数:14
相关论文
共 50 条
  • [21] Real-Time Banana Ripeness Detection and Classification using YOLOv8
    Baldovino, Renann G.
    Lim, Raphael Antoine U.
    Salvador, Patrick Reylie R.
    Tiamzon, Euri Andre P.
    9TH INTERNATIONAL CONFERENCE ON MECHATRONICS ENGINEERING, ICOM 2024, 2024, : 219 - 223
  • [22] Improved YOLOv8 algorithms for small object detection in aerial imagery
    Feng, Fei
    Hu, Yu
    Li, Weipeng
    Yang, Feiyan
    JOURNAL OF KING SAUD UNIVERSITY-COMPUTER AND INFORMATION SCIENCES, 2024, 36 (06)
  • [23] Fruit ripeness identification using YOLOv8 model
    Bingjie Xiao
    Minh Nguyen
    Wei Qi Yan
    Multimedia Tools and Applications, 2024, 83 : 28039 - 28056
  • [24] Fruit ripeness identification using YOLOv8 model
    Xiao, Bingjie
    Nguyen, Minh
    Yan, Wei Qi
    MULTIMEDIA TOOLS AND APPLICATIONS, 2024, 83 (09) : 28039 - 28056
  • [25] Detecting chestnuts using improved lightweight YOLOv8
    Li M.
    Xiao Y.
    Zong W.
    Song B.
    Nongye Gongcheng Xuebao/Transactions of the Chinese Society of Agricultural Engineering, 2024, 40 (01): : 201 - 209
  • [26] YOLOv8-UCB: Visual Detection of Pouch Battery Using Improved YOLOv8
    Hao, Hao
    Yu, Xiang
    IEEE ACCESS, 2024, 12 : 194899 - 194910
  • [27] Reducing Traffic Congestion Using Real-Time Traffic Monitoring with YOLOv8
    Pudaruth, Sameerchand
    Boodhun, Irfaan Mohammad
    Onn, Choo Wou
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2024, 15 (10) : 1068 - 1079
  • [28] Real-Time Waste Detection Based on YOLOv8
    Mehadjbia, Abdelhak
    Slaoui-Hasnaoui, Fouad
    4TH INTERDISCIPLINARY CONFERENCE ON ELECTRICS AND COMPUTER, INTCEC 2024, 2024,
  • [29] YOLOv8-FDD: A Real-Time Vehicle Detection Method Based on Improved YOLOv8
    Liu, Xiaojia
    Wang, Yipeng
    Yu, Dexin
    Yuan, Zimin
    IEEE ACCESS, 2024, 12 : 136280 - 136296
  • [30] Real-Time Detection of Crop Leaf Diseases Using Enhanced YOLOv8 algorithm
    Orchi, Houda
    Sadik, Mohamed
    Khaldoun, Mohammed
    Sabir, Essaid
    2023 INTERNATIONAL WIRELESS COMMUNICATIONS AND MOBILE COMPUTING, IWCMC, 2023, : 1690 - 1696