A Novel Study Based on Fuzzy p-Ideals of BCI-Algebras

被引:1
作者
Muhiuddin, G. [1 ]
Abughazalah, Nabilah [2 ]
Mahboob, A. [3 ]
Elnair, M. E. [1 ,4 ]
Alotaibi, Abdullah G. [1 ]
机构
[1] Univ Tabuk, Fac Sci, Dept Math, POB 741, Tabuk 71491, Saudi Arabia
[2] Princess Nourah Bint Abdulrahman Univ, Coll Sci, Dept Math Sci, POB 84428, Riyadh 11671, Saudi Arabia
[3] Madanapalle Inst Technol & Sci, Dept Math, Madanapalle 517325, India
[4] Gezira Univ, Dept Math & Phys, POB 20, Wad Madani, Sudan
关键词
ELEMENT; (IS-AN-ELEMENT-OF;
D O I
10.1155/2023/9453596
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we propose the concept of (epsilon, epsilon V(j(*), q(j)))-fuzzy p-ideals in "BCI-algebras." We show that "(epsilon, epsilon Vq))-fuzzy p-ideals" and "(epsilon V(j(*), q(j)), epsilon V(j(*), q(j)))-fuzzy p-ideals" are "(epsilon, epsilon V(j(*), q(j)))-fuzzy p-ideals." However, the converse is not true, then presented examples. For a BCI-algebra Y, it has been shown that ever y (epsilon, epsilon V(j(*), q(j)))-fuzzy p-ideal of Y is an (epsilon, epsilon V(j(*), q(j)))-fuzzy ideals of Y but not conversely, and then, an example is given. Furthermore in Y, a connection between (epsilon, epsilon V(j(*), q(j)))-fuzzy p-ideals and p-ideals is established.
引用
收藏
页数:6
相关论文
共 26 条
[1]  
Al-Masarwah A. N. A. S., 2019, ANN COMMUNICATIONS M, V2, P11
[2]   m-Polar (α, β)-Fuzzy Ideals in BCK/BCI-Algebras [J].
Al-Masarwah, Anas ;
Ahmad, Abd Ghafur .
SYMMETRY-BASEL, 2019, 11 (01)
[3]   (is an element of,is an element of boolean OR q)-fuzzy subgroup [J].
Bhakat, SK ;
Das, P .
FUZZY SETS AND SYSTEMS, 1996, 80 (03) :359-368
[4]   On the Algebraic Attributes of (α, β)-Pythagorean Fuzzy Subrings and (α, β)-Pythagorean Fuzzy Ideals of Rings [J].
Bhunia, Supriya ;
Ghorai, Ganesh ;
Xin, Qin ;
Gulzar, Muhammad .
IEEE ACCESS, 2022, 10 :11048-11056
[5]   On the Algebraic Characteristics of Fuzzy Sub e-Groups [J].
Bhunia, Supriya ;
Ghorai, Ganesh ;
Kutbi, Marwan Amin ;
Gulzar, Muhammad ;
Alam, Md Ashraful .
JOURNAL OF FUNCTION SPACES, 2021, 2021
[6]  
Ejegwa P. A., 2019, ANN COMMUNICATION MA, V2, P24
[7]   ON AXIOM SYSTEMS OF PROPOSITIONAL CALCULI .14. [J].
IMAI, Y ;
ISEKI, K .
PROCEEDINGS OF THE JAPAN ACADEMY, 1966, 42 (01) :19-&
[8]   AN ALGEBRA RELATED WITH A PROPOSITIONAL CALCULUS [J].
ISEKI, K .
PROCEEDINGS OF THE JAPAN ACADEMY, 1966, 42 (01) :26-&
[9]  
JUN Y.B., 2005, Bull. Korean Math. Soc, V42, P703
[10]  
Jun Y. B., 2004, Scientiae Mathematicae Japonicae, V60, P613