Formal Comparison of Simultaneous Perturbation Stochastic Approximation and Random Direction Stochastic Approximation

被引:2
作者
Peng, Ducheng [1 ]
Chen, Yiwen [2 ]
Spall, James C. [1 ,3 ]
机构
[1] Johns Hopkins Univ, Appl Math & Stat Dept, Whitehead Hall,3400 North Charles St, Baltimore, MD 21218 USA
[2] Johns Hopkins Univ, Appl Math & Stat Dept, Baltimore, MD USA
[3] JHU, Appl Phys Lab & Res, Baltimore, MD USA
来源
2023 AMERICAN CONTROL CONFERENCE, ACC | 2023年
关键词
OPTIMIZATION; ALGORITHMS; CONTROLLER; SYSTEMS;
D O I
10.23919/ACC55779.2023.10156400
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Stochastic approximation (SA) algorithms can be used in system optimization problems when only noisy measurements of a system are available. This paper formally compares the performance of two popular SA algorithms in a multivariate Kiefer-Wolfowitz setting of simultaneous-perturbation SA (SPSA) and the random-directions SA (RDSA). This paper provides sufficient conditions to demonstrate which algorithm has the smaller asymptotic mean squared error (MSE) and numerically presents comparison of SPSA and RDSA in a test function and a model-free control system. The theory and supporting numerics indicate that SPSA has better efficiency (lower MSE) across a broad range of problem settings.
引用
收藏
页码:744 / 749
页数:6
相关论文
共 50 条
[41]   Using normalized simultaneous perturbation stochastic approximation for stable convergence in model-free control scheme [J].
Ahmad, Mohd Ashraf ;
Mustapha, Nik Mohd Zaitul Akmal ;
Nasir, Ahmad Nor Kasruddin ;
Tumari, Mohd Zaidi Mohd ;
Ismail, Raja Mohd Taufika Raja ;
Ibrahim, Zuwairie .
PROCEEDINGS OF 4TH IEEE INTERNATIONAL CONFERENCE ON APPLIED SYSTEM INNOVATION 2018 ( IEEE ICASI 2018 ), 2018, :935-938
[42]   Simultaneous Perturbation Stochastic Approximation-Based Consensus for Tracking Under Unknown-But-Bounded Disturbances [J].
Granichin, Oleg ;
Erofeeva, Victoria ;
Ivanskiy, Yury ;
Jiang, Yuming .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2021, 66 (08) :3710-3717
[43]   A novel data based control method based upon neural network and simultaneous perturbation stochastic approximation [J].
Dong, Na ;
Chen, Zengqiang .
NONLINEAR DYNAMICS, 2012, 67 (02) :957-963
[44]   A STOCHASTIC APPROXIMATION ALGORITHM FOR STOCHASTIC SEMIDEFINITE PROGRAMMING [J].
Gaujal, Bruno ;
Mertikopoulos, Panayotis .
PROBABILITY IN THE ENGINEERING AND INFORMATIONAL SCIENCES, 2016, 30 (03) :431-454
[45]   Combining the stochastic counterpart and stochastic approximation methods [J].
Dussault, JP ;
Labrecque, D ;
LEcuyer, P ;
Rubinstein, RY .
DISCRETE EVENT DYNAMIC SYSTEMS-THEORY AND APPLICATIONS, 1997, 7 (01) :5-28
[46]   Adaptive System Optimization Using Random Directions Stochastic Approximation [J].
Prashanth, L. A. ;
Bhatnagar, Shalabh ;
Fu, Michael ;
Marcus, Steve .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2017, 62 (05) :2223-2238
[47]   Maximum Power Point Tracking of Multi-String Photovoltaic Array via Simultaneous Perturbation Stochastic Approximation [J].
Xiao, Yan ;
Li, Yaoyu ;
Seem, John E. ;
Rajashekara, Kaushik .
PROCEEDINGS OF THE ASME 2013 DYNAMIC SYSTEMS AND CONTROL CONFERENCE (DSCC2013), VOL. 1, 2013,
[48]   Discrete non-linear adaptive data driven control based upon simultaneous perturbation stochastic approximation [J].
Dong, Na ;
Wu, Aiguo ;
Chen, Zengqiang .
NONLINEAR DYNAMICS, 2013, 72 (04) :883-894
[49]   Regularized Iterative Stochastic Approximation Methods for Stochastic Variational Inequality Problems [J].
Koshal, Jayash ;
Nedic, Angelia ;
Shanbhag, Uday V. .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2013, 58 (03) :594-609
[50]   The Curse of Memory in Stochastic Approximation [J].
Lauand, Caio Kalil ;
Meyn, Sean .
2023 62ND IEEE CONFERENCE ON DECISION AND CONTROL, CDC, 2023, :7803-7809