Formal Comparison of Simultaneous Perturbation Stochastic Approximation and Random Direction Stochastic Approximation

被引:2
作者
Peng, Ducheng [1 ]
Chen, Yiwen [2 ]
Spall, James C. [1 ,3 ]
机构
[1] Johns Hopkins Univ, Appl Math & Stat Dept, Whitehead Hall,3400 North Charles St, Baltimore, MD 21218 USA
[2] Johns Hopkins Univ, Appl Math & Stat Dept, Baltimore, MD USA
[3] JHU, Appl Phys Lab & Res, Baltimore, MD USA
来源
2023 AMERICAN CONTROL CONFERENCE, ACC | 2023年
关键词
OPTIMIZATION; ALGORITHMS; CONTROLLER; SYSTEMS;
D O I
10.23919/ACC55779.2023.10156400
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Stochastic approximation (SA) algorithms can be used in system optimization problems when only noisy measurements of a system are available. This paper formally compares the performance of two popular SA algorithms in a multivariate Kiefer-Wolfowitz setting of simultaneous-perturbation SA (SPSA) and the random-directions SA (RDSA). This paper provides sufficient conditions to demonstrate which algorithm has the smaller asymptotic mean squared error (MSE) and numerically presents comparison of SPSA and RDSA in a test function and a model-free control system. The theory and supporting numerics indicate that SPSA has better efficiency (lower MSE) across a broad range of problem settings.
引用
收藏
页码:744 / 749
页数:6
相关论文
共 50 条
[21]   OPTIMIZATION OF DYNAMIC RAMP METERING CONTROL WITH SIMULTANEOUS PERTURBATION STOCHASTIC APPROXIMATION [J].
Chien, S. I. ;
Luo, J. .
CONTROL AND INTELLIGENT SYSTEMS, 2008, 36 (01)
[22]   Rate of Convergence Analysis of Discrete Simultaneous Perturbation Stochastic Approximation Algorithm [J].
Wang, Qi ;
Spall, James C. .
2013 AMERICAN CONTROL CONFERENCE (ACC), 2013, :4771-4776
[23]   A robust recurrent simultaneous perturbation stochastic approximation training algorithm for recurrent neural networks [J].
Xu, Zhao ;
Song, Qing ;
Wang, Danwei .
NEURAL COMPUTING & APPLICATIONS, 2014, 24 (7-8) :1851-1866
[24]   Random Directions Stochastic Approximation With Deterministic Perturbations [J].
Prashanth, L. A. ;
Bhatnagar, Shalabh ;
Bhavsar, Nirav ;
Fu, Michael ;
Marcus, Steven, I .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2020, 65 (06) :2450-2465
[25]   A method combining genetic algorithm with simultaneous perturbation stochastic approximation for linearly constrained stochastic optimization problems [J].
Zhang Huajun ;
Jin, Zhao ;
Hui, Luo .
JOURNAL OF COMBINATORIAL OPTIMIZATION, 2016, 31 (03) :979-995
[26]   Tuning Missile Guidance and Control Algorithms Using Simultaneous Perturbation Stochastic Approximation [J].
Reardon, Brian E. ;
Lloyd, Justin M. ;
Perel, Ron Y. .
JOHNS HOPKINS APL TECHNICAL DIGEST, 2010, 29 (01) :85-100
[27]   Tuning of Elasticsearch Configuration: Parameter Optimization Through Simultaneous Perturbation Stochastic Approximation [J].
Haugerud, Harek ;
Sobhie, Mohamad ;
Yazidi, Anis .
FRONTIERS IN BIG DATA, 2022, 5
[28]   Constrained source seeking for mobile robots via simultaneous perturbation stochastic approximation [J].
Ramirez-Lianos, Eduardo ;
Martinez, Sonia .
2016 IEEE 55TH CONFERENCE ON DECISION AND CONTROL (CDC), 2016, :6851-6856
[29]   Sparse Gaussian Mixture Model Clustering via Simultaneous Perturbation Stochastic Approximation [J].
Boiarov, Andrei ;
Granichin, Oleg .
IFAC PAPERSONLINE, 2020, 53 (02) :995-1000
[30]   Controller Design by Using Simultaneous Perturbation Stochastic Approximation with Changeable Sliding Window [J].
Lu, Qing ;
Zhou, Jun .
INTELLIGENT ROBOTICS AND APPLICATIONS, ICIRA 2019, PT III, 2019, 11742 :665-676