Formal Comparison of Simultaneous Perturbation Stochastic Approximation and Random Direction Stochastic Approximation

被引:2
作者
Peng, Ducheng [1 ]
Chen, Yiwen [2 ]
Spall, James C. [1 ,3 ]
机构
[1] Johns Hopkins Univ, Appl Math & Stat Dept, Whitehead Hall,3400 North Charles St, Baltimore, MD 21218 USA
[2] Johns Hopkins Univ, Appl Math & Stat Dept, Baltimore, MD USA
[3] JHU, Appl Phys Lab & Res, Baltimore, MD USA
来源
2023 AMERICAN CONTROL CONFERENCE, ACC | 2023年
关键词
OPTIMIZATION; ALGORITHMS; CONTROLLER; SYSTEMS;
D O I
10.23919/ACC55779.2023.10156400
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Stochastic approximation (SA) algorithms can be used in system optimization problems when only noisy measurements of a system are available. This paper formally compares the performance of two popular SA algorithms in a multivariate Kiefer-Wolfowitz setting of simultaneous-perturbation SA (SPSA) and the random-directions SA (RDSA). This paper provides sufficient conditions to demonstrate which algorithm has the smaller asymptotic mean squared error (MSE) and numerically presents comparison of SPSA and RDSA in a test function and a model-free control system. The theory and supporting numerics indicate that SPSA has better efficiency (lower MSE) across a broad range of problem settings.
引用
收藏
页码:744 / 749
页数:6
相关论文
共 50 条
  • [21] Discrete Simultaneous Perturbation Stochastic Approximation on Loss Function with Noisy Measurements
    Wang, Qi
    Spall, James C.
    2011 AMERICAN CONTROL CONFERENCE, 2011, : 4520 - 4525
  • [22] OPTIMIZATION OF DYNAMIC RAMP METERING CONTROL WITH SIMULTANEOUS PERTURBATION STOCHASTIC APPROXIMATION
    Chien, S. I.
    Luo, J.
    CONTROL AND INTELLIGENT SYSTEMS, 2008, 36 (01)
  • [23] A robust recurrent simultaneous perturbation stochastic approximation training algorithm for recurrent neural networks
    Xu, Zhao
    Song, Qing
    Wang, Danwei
    NEURAL COMPUTING & APPLICATIONS, 2014, 24 (7-8) : 1851 - 1866
  • [24] Random Directions Stochastic Approximation With Deterministic Perturbations
    Prashanth, L. A.
    Bhatnagar, Shalabh
    Bhavsar, Nirav
    Fu, Michael
    Marcus, Steven, I
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2020, 65 (06) : 2450 - 2465
  • [25] A method combining genetic algorithm with simultaneous perturbation stochastic approximation for linearly constrained stochastic optimization problems
    Zhang Huajun
    Jin, Zhao
    Hui, Luo
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2016, 31 (03) : 979 - 995
  • [26] Tuning Missile Guidance and Control Algorithms Using Simultaneous Perturbation Stochastic Approximation
    Reardon, Brian E.
    Lloyd, Justin M.
    Perel, Ron Y.
    JOHNS HOPKINS APL TECHNICAL DIGEST, 2010, 29 (01): : 85 - 100
  • [27] Tuning of Elasticsearch Configuration: Parameter Optimization Through Simultaneous Perturbation Stochastic Approximation
    Haugerud, Harek
    Sobhie, Mohamad
    Yazidi, Anis
    FRONTIERS IN BIG DATA, 2022, 5
  • [28] Constrained source seeking for mobile robots via simultaneous perturbation stochastic approximation
    Ramirez-Lianos, Eduardo
    Martinez, Sonia
    2016 IEEE 55TH CONFERENCE ON DECISION AND CONTROL (CDC), 2016, : 6851 - 6856
  • [29] Sparse Gaussian Mixture Model Clustering via Simultaneous Perturbation Stochastic Approximation
    Boiarov, Andrei
    Granichin, Oleg
    IFAC PAPERSONLINE, 2020, 53 (02): : 995 - 1000
  • [30] Controller Design by Using Simultaneous Perturbation Stochastic Approximation with Changeable Sliding Window
    Lu, Qing
    Zhou, Jun
    INTELLIGENT ROBOTICS AND APPLICATIONS, ICIRA 2019, PT III, 2019, 11742 : 665 - 676