Formal Comparison of Simultaneous Perturbation Stochastic Approximation and Random Direction Stochastic Approximation

被引:2
|
作者
Peng, Ducheng [1 ]
Chen, Yiwen [2 ]
Spall, James C. [1 ,3 ]
机构
[1] Johns Hopkins Univ, Appl Math & Stat Dept, Whitehead Hall,3400 North Charles St, Baltimore, MD 21218 USA
[2] Johns Hopkins Univ, Appl Math & Stat Dept, Baltimore, MD USA
[3] JHU, Appl Phys Lab & Res, Baltimore, MD USA
来源
2023 AMERICAN CONTROL CONFERENCE, ACC | 2023年
关键词
OPTIMIZATION; ALGORITHMS; CONTROLLER; SYSTEMS;
D O I
10.23919/ACC55779.2023.10156400
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Stochastic approximation (SA) algorithms can be used in system optimization problems when only noisy measurements of a system are available. This paper formally compares the performance of two popular SA algorithms in a multivariate Kiefer-Wolfowitz setting of simultaneous-perturbation SA (SPSA) and the random-directions SA (RDSA). This paper provides sufficient conditions to demonstrate which algorithm has the smaller asymptotic mean squared error (MSE) and numerically presents comparison of SPSA and RDSA in a test function and a model-free control system. The theory and supporting numerics indicate that SPSA has better efficiency (lower MSE) across a broad range of problem settings.
引用
收藏
页码:744 / 749
页数:6
相关论文
共 50 条