The feedback effects of aerosols from different sources on the urban boundary layer in Beijing China

被引:22
作者
Xin, Jinyuan [1 ,2 ]
Ma, Yongjing [1 ]
Zhao, Dandan [1 ]
Gong, Chongshui [3 ]
Ren, Xinbing [1 ,2 ]
Tang, Guiqian [1 ]
Xia, Xiangao [1 ]
Wang, Zifa [1 ]
Cao, Junji [1 ]
de Arellano, Jordi Vila-Guerau [4 ]
Martin, Scot T. [5 ]
机构
[1] Chinese Acad Sci, Inst Atmospher Phys, State Key Lab Atmospher Boundary Layer Phys & Atmo, Beijing 100029, Peoples R China
[2] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
[3] China Meteorol Adm, Inst Arid Meteorol, Lanzhou 730020, Peoples R China
[4] Wageningen Univ, Meteorol & Air Qual, Wageningen, Netherlands
[5] Harvard Univ, Sch Engn & Appl Sci, Cambridge, MA 02138 USA
基金
国家重点研发计划;
关键词
Aerosol; Planetary boundary layer; Feedback effect; Large-eddy simulation; Beijing; AIR-POLLUTION; HAZE; SIMILARITY; IMPACTS; DEPTH; LIDAR;
D O I
10.1016/j.envpol.2023.121440
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The interaction of aerosols and the planetary boundary layer (PBL) plays an important role in deteriorating urban air quality. Aerosols from different sources may have different effects on regulating PBL structures owing to their distinctive dominant compositions and vertical distributions. To characterize the complex feedback of aerosols on PBL over the Beijing megacity, multiple approaches, including in situ observations in the autumn and winter of 2016-2019, backward trajectory clusters, and large-eddy simulations, were adopted. The results revealed notable distinctions in aerosol properties, vertical distributions and thermal stratifications among three types of air masses from the West Siberian Plain (Type-1), Central Siberian Plateau (Type-2) and Mongolian Plateau (Type-3). Low loadings of 0.28 +/- 0.26 and 0.15 +/- 0.08 of aerosol optical depth (AOD) appeared in the Type-1 and Type-2, accompanied by cool and less stable stratification, with a large part (80%) of aerosols concentrated below 1500 m. For Type-3, the AOD and single scattering albedo (SSA) were as high as 0.75 +/- 0.54 and 0.91 +/- 0.05, demonstrating severe pollution levels of abundant scattering aerosols. Eighty percent of the aerosols were constrained within a lower height of 1150 m owing to the warmer and more stable environment. Large-eddy simulations revealed that aerosols consistently suppressed the daytime convective boundary layer regardless of their origins, with the PBL height (PBLH) decreasing from 1120 m (Type-1), 1160 m (Type-2) and 820 m (Type-3) in the ideal clean scenarios to 980 m, 1100 m and 600 m, respectively, under polluted conditions. Therefore, the promotion of absorbing aerosols below the residual layer on PBL could be greatly hindered by the suppression effects generated by both absorbing aerosols in the upper temperature inversion layer and scattering aerosols. Moreover, the results indicated the possible complexities of aerosol-PBL interactions under future emission-reduction scenarios and in other urban regions.
引用
收藏
页数:10
相关论文
共 47 条
[1]   Characterization of downwelling radiance measured from a ground-based microwave radiometer using numerical weather prediction model data [J].
Ahn, M. -H. ;
Won, H. Y. ;
Han, D. ;
Kim, Y. -H. ;
Ha, J. -C. .
ATMOSPHERIC MEASUREMENT TECHNIQUES, 2016, 9 (01) :281-293
[2]   BOUNDARY-LAYER DEPTH AND ENTRAINMENT ZONE CHARACTERIZATION WITH A BOUNDARY-LAYER PROFILER [J].
ANGEVINE, WM ;
WHITE, AB ;
AVERY, SK .
BOUNDARY-LAYER METEOROLOGY, 1994, 68 (04) :375-385
[3]  
[Anonymous], 2009, HYSPLIT_4 user's guide
[4]   Impacts of Aerosol Shortwave Radiation Absorption on the Dynamics of an Idealized Convective Atmospheric Boundary Layer [J].
Barbaro, E. ;
de Arellano, J. Vila-Guerau ;
Krol, M. C. ;
Holtslag, A. A. M. .
BOUNDARY-LAYER METEOROLOGY, 2013, 148 (01) :31-49
[5]   Aerosols in the convective boundary layer: Shortwave radiation effects on the coupled land-atmosphere system [J].
Barbaro, Eduardo ;
de Arellano, Jordi Vila-Guerau ;
Ouwersloot, Huug G. ;
Schroter, Joel S. ;
Donovan, David P. ;
Krol, Maarten C. .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2014, 119 (10) :5845-5863
[6]   Modeling study of the 2010 regional haze event in the North China Plain [J].
Gao, M. ;
Carmichael, G. R. ;
Wang, Y. ;
Saide, P. E. ;
Yu, M. ;
Xin, J. ;
Liu, Z. ;
Wang, Z. .
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2016, 16 (03) :1673-1691
[7]   Formulation of the Dutch Atmospheric Large-Eddy Simulation (DALES) and overview of its applications [J].
Heus, T. ;
van Heerwaarden, C. C. ;
Jonker, H. J. J. ;
Siebesma, A. Pier ;
Axelsen, S. ;
van den Dries, K. ;
Geoffroy, O. ;
Moene, A. F. ;
Pino, D. ;
de Roode, S. R. ;
Vila-Guerau de Arellano, J. .
GEOSCIENTIFIC MODEL DEVELOPMENT, 2010, 3 (02) :415-444
[8]   AERONET - A federated instrument network and data archive for aerosol characterization [J].
Holben, BN ;
Eck, TF ;
Slutsker, I ;
Tanre, D ;
Buis, JP ;
Setzer, A ;
Vermote, E ;
Reagan, JA ;
Kaufman, YJ ;
Nakajima, T ;
Lavenu, F ;
Jankowiak, I ;
Smirnov, A .
REMOTE SENSING OF ENVIRONMENT, 1998, 66 (01) :1-16
[9]   Impact of Aerosol-PBL Interaction on Haze Pollution: Multiyear Observational Evidences in North China [J].
Huang, Xin ;
Wang, Zilin ;
Ding, Aijun .
GEOPHYSICAL RESEARCH LETTERS, 2018, 45 (16) :8596-8603
[10]   Characteristics of atmospheric organic and elemental carbon aerosols in urban Beijing, China [J].
Ji, Dongsheng ;
Zhang, Junke ;
He, Jun ;
Wang, Xiaoju ;
Pang, Bo ;
Liu, Zirui ;
Wang, Lili ;
Wang, Yuesi .
ATMOSPHERIC ENVIRONMENT, 2016, 125 :293-306