Existence and Multiplicity of Solutions for a Fractional Schrodinger-Poisson System with Subcritical or Critical Growth

被引:1
作者
Gu, Guangze [1 ]
Mu, Changyang [1 ]
Yang, Zhipeng [1 ]
机构
[1] Yunnan Normal Univ, Dept Math, Kunming, Peoples R China
基金
中国国家自然科学基金;
关键词
Fractional Schrodinger-Poisson system; Ground state; Geometrically distinct solutions; Ljusternik-Schnirelmann theory; GROUND-STATE SOLUTIONS; POSITIVE SOLUTIONS; BOUND-STATES; EQUATIONS;
D O I
10.1007/s12346-023-00756-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the existence of positive ground state solutions and infinitely many geometrically distinct solutions for the following fractional Schrodinger- Poisson system {(-delta)(s )u + V (x)u + phi u = f (x, u), in R-3, (-delta)(s )phi = u(2), in R-3, where s is an element of (3/4, 1) is a fixed constant, f is continuous, superlinear at infinity with subcritical or critical growth and V and f are asymptotically periodic in x. Applying the method of Nehari manifold and Lusternik-Schnirelmann category theory, three existence results are given.
引用
收藏
页数:39
相关论文
共 48 条
[1]  
[Anonymous], 1996, Minimax theorems, DOI DOI 10.1007/978-1-4612-4146-1
[2]   Ground state solutions for the nonlinear Schrodinger-Maxwell equations [J].
Azzollini, A. ;
Pomponio, A. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 345 (01) :90-108
[3]   Solitary waves of the nonlinear Klein-Gordon equation coupled with the Maxwell equations [J].
Benci, V ;
Fortunato, D .
REVIEWS IN MATHEMATICAL PHYSICS, 2002, 14 (04) :409-420
[4]   THE EFFECT OF THE DOMAIN TOPOLOGY ON THE NUMBER OF POSITIVE SOLUTIONS OF NONLINEAR ELLIPTIC PROBLEMS [J].
BENCI, V ;
CERAMI, G .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1991, 114 (01) :79-93
[5]  
Benci V., 1998, TOPOL METHOD NONL AN, V11, P283, DOI [10.12775/TMNA.1998.019, DOI 10.12775/TMNA.1998.019]
[6]   A RELATION BETWEEN POINTWISE CONVERGENCE OF FUNCTIONS AND CONVERGENCE OF FUNCTIONALS [J].
BREZIS, H ;
LIEB, E .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1983, 88 (03) :486-490
[7]   An extension problem related to the fractional Laplacian [J].
Caffarelli, Luis ;
Silvestre, Luis .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2007, 32 (7-9) :1245-1260
[8]   Ground state solutions of asymptotically linear fractional Schrodinger equations [J].
Chang, Xiaojun .
JOURNAL OF MATHEMATICAL PHYSICS, 2013, 54 (06)
[9]   On bound states concentrating on spheres for the Maxwell-Schrodinger equation [J].
D'Aprile, T ;
Wei, JC .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2005, 37 (01) :321-342
[10]   Hitchhiker's guide to the fractional Sobolev spaces [J].
Di Nezza, Eleonora ;
Palatucci, Giampiero ;
Valdinoci, Enrico .
BULLETIN DES SCIENCES MATHEMATIQUES, 2012, 136 (05) :521-573