D-STGCN: Dynamic Pedestrian Trajectory Prediction Using Spatio-Temporal Graph Convolutional Networks

被引:11
作者
Sighencea, Bogdan Ilie [1 ]
Stanciu, Ion Rares [1 ]
Caleanu, Catalin Daniel [1 ]
机构
[1] Politehn Univ Timisoara, Fac Elect Telecommun & Informat Technol, Dept Appl Elect, Timisoara 300223, Romania
关键词
pedestrian trajectory prediction; deep learning; social interactions; graph neural networks;
D O I
10.3390/electronics12030611
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Predicting pedestrian trajectories in urban scenarios is a challenging task that has a wide range of applications, from video surveillance to autonomous driving. The task is difficult since pedestrian behavior is affected by both their individual path's history, their interactions with others, and with the environment. For predicting pedestrian trajectories, an attention-based interaction-aware spatio-temporal graph neural network is introduced. This paper introduces an approach based on two components: a spatial graph neural network (SGNN) for interaction-modeling and a temporal graph neural network (TGNN) for motion feature extraction. The SGNN uses an attention method to periodically collect spatial interactions between all pedestrians. The TGNN employs an attention method as well, this time to collect each pedestrian's temporal motion pattern. Finally, in the graph's temporal dimension characteristics, a time-extrapolator convolutional neural network (CNN) is employed to predict the trajectories. Using a lower variable size (data and model) and a better accuracy, the proposed method is compact, efficient, and better than the one represented by the social-STGCNN. Moreover, using three video surveillance datasets (ETH, UCY, and SDD), D-STGCN achieves better experimental results considering the average displacement error (ADE) and final displacement error (FDE) metrics, in addition to predicting more social trajectories.
引用
收藏
页数:15
相关论文
共 49 条
[1]   Social LSTM: Human Trajectory Prediction in Crowded Spaces [J].
Alahi, Alexandre ;
Goel, Kratarth ;
Ramanathan, Vignesh ;
Robicquet, Alexandre ;
Li Fei-Fei ;
Savarese, Silvio .
2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, :961-971
[2]   Social Ways: Learning Multi-Modal Distributions of Pedestrian Trajectories with GANs [J].
Amirian, Javad ;
Hayet, Jean-Bernard ;
Pettre, Julien .
2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS (CVPRW 2019), 2019, :2964-2972
[3]  
[Anonymous], 2012, PED SAF URB SPAC HLT
[4]  
Bai S., EMPIRICAL EVALUATION
[5]  
Battaglia P.W., 2018, Arxiv
[6]  
Bruna J., 2013, SPECTRAL NETWORKS LO
[7]   nuScenes: A multimodal dataset for autonomous driving [J].
Caesar, Holger ;
Bankiti, Varun ;
Lang, Alex H. ;
Vora, Sourabh ;
Liong, Venice Erin ;
Xu, Qiang ;
Krishnan, Anush ;
Pan, Yu ;
Baldan, Giancarlo ;
Beijbom, Oscar .
2020 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2020), 2020, :11618-11628
[8]   Multiobjective Overtaking Maneuver Planning for Autonomous Ground Vehicles [J].
Chai, Runqi ;
Tsourdos, Antonios ;
Al Savvaris ;
Chai, Senchun ;
Xia, Yuanqing ;
Chen, C. L. Philip .
IEEE TRANSACTIONS ON CYBERNETICS, 2021, 51 (08) :4035-4049
[9]   TraPHic: Trajectory Prediction in Dense and Heterogeneous Traffic Using Weighted Interactions [J].
Chandra, Rohan ;
Bhattacharya, Uttaran ;
Bera, Aniket ;
Manocha, Dinesh .
2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, :8475-8484
[10]  
Defferrard M, 2016, ADV NEUR IN, V29