Normalized Ground State Solutions of Nonlinear Schrodinger Equations Involving Exponential Critical Growth

被引:22
作者
Chang, Xiaojun [1 ]
Liu, Manting [1 ]
Yan, Duokui [2 ]
机构
[1] Northeast Normal Univ, Ctr Math & Interdisciplinary Sci, Sch Math & Stat, Changchun 130024, Peoples R China
[2] Beihang Univ, Sch Math Sci, Beijing 100191, Peoples R China
基金
中国国家自然科学基金;
关键词
Normalized ground state solutions; Nonlinear Schrodinger equations; Exponential critical growth; Constrained minimization method; Trudinger-Moser inequality; EXISTENCE;
D O I
10.1007/s12220-022-01130-8
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We are concerned with the following nonlinear Schrodinger equation: u +.u = f (u) in R2, u. H1(R2), R2 u2dx =., where. > 0 is given,.. R arises as a Lagrange multiplier and f satisfies an exponential critical growth. Without assuming the Ambrosetti-Rabinowitz condition, we show the existence of normalized ground state solutions for any. > 0. The proof is based on a constrained minimization method and the Trudinger-Moser inequality in R2.
引用
收藏
页数:20
相关论文
共 31 条
[1]   Partially coherent solitons on a finite background [J].
Akhmediev, N ;
Ankiewicz, A .
PHYSICAL REVIEW LETTERS, 1999, 82 (13) :2661-2664
[2]  
Alves CO, 2022, CALC VAR PARTIAL DIF, V61, DOI 10.1007/s00526-021-02123-1
[3]   Existence of a ground state solution for a nonlinear scalar field equation with critical growth [J].
Alves, Claudianor O. ;
Souto, Marco A. S. ;
Montenegro, Marcelo .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2012, 43 (3-4) :537-554
[4]  
Alves CO., 2021, arXiv
[5]  
[Anonymous], 1997, Minimax Theorems
[6]  
[Anonymous], 1993, Duality and perturbation methods in critical point theory
[7]   MATHEMATICAL THEORY AND NUMERICAL METHODS FOR BOSE-EINSTEIN CONDENSATION [J].
Bao, Weizhu ;
Cai, Yongyong .
KINETIC AND RELATED MODELS, 2013, 6 (01) :1-135
[8]   A natural constraint approach to normalized solutions of nonlinear Schrodinger equations and systems (vol 272, pg 4998, 2017) [J].
Bartsch, Thomas ;
Soave, Nicola .
JOURNAL OF FUNCTIONAL ANALYSIS, 2018, 275 (02) :516-521
[9]   A natural constraint approach to normalized solutions of nonlinear Schrodinger equations and systems [J].
Bartsch, Thomas ;
Soave, Nicola .
JOURNAL OF FUNCTIONAL ANALYSIS, 2017, 272 (12) :4998-5037
[10]   Normalized solutions of nonlinear Schrodinger equations [J].
Bartsch, Thomas ;
de Valeriola, Sebastien .
ARCHIV DER MATHEMATIK, 2013, 100 (01) :75-83